Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 39
185 185 Morris, A., Hillenbrand, M., Finkelman, M., George, M.P., Singh, V., Kessinger, C., Lucht, L., Busch, M., McMahon, D., Weinman, R., Steele, C., Norris, K.A., and Gingo, M.R. (2012). Serum (1>3)-β-D-glucan levels in HIV-infected individuals are associated with immunosuppression, inflammation, and cardiopulmonary function. JAIDS Journal of Acquired Immune Deficiency Syndromes 61 (4): 462–468.
186 186 Araujo, D., Alves, V.D., Marques, A.C., Fortunato, E., Reis, M.A.M., and Freitas, F. (2020). Low temperature dissolution of yeast chitin-glucan complex and characterization of the regenerated polymer. Bioengineering (Basel) 7 (1).
187 187 Wang, H., Chen, G., Li, X., Zheng, F., and Zeng, X. (2020). Yeast beta-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food and Function 11 (12): 10386–10396.
188 188 Pornanek, P. and Phoemchalard, C. (2020). Dietary supplementation of beta-glucan-rich molasses yeast powder on antibody response to swine fever virus and hematology of starter-grower pigs. Tropical Animal Health and Production 53 (1): 43.
189 189 Huang, H., Liu, Y., and Liu, R. (2009). Sphingomonas sp.: an important microbial resource for biopolymer synthesis. Wei Sheng Wu Xue Bao 49 (5): 560–566.
190 190 Matyshevskaia, M.S., Gvozdiak, R.I., Maiko, I.I., Lipkes, M.I., and Dedusenko, G. (1979). Biopolymer produced by bacteria of the genus Xanthomonas and its use in the petroleum industry. Mikrobiologicheskii Zhurnal 41 (1): 88–92.
191 191 Tolstoguzov, V. (2002). Thermodynamic aspects of biopolymer functionality in biological systems, foods, and beverages. Critical Reviews in Biotechnology 22 (2): 89–174.
192 192 Zhong, J., Frases, S., Wang, H., Casadevall, A., and Stark, R.E. (2008). Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry 47 (16): 4701–4710.
193 193 Zhu, C., Lee, J.H., Raghavan, S.R., and Payne, G.F. (2006). Bioinspired vesicle restraint and mobilization using a biopolymer scaffold. Langmuir 22 (7): 2951–2955.
194 194 Recuenco, F.C., Kobayashi, K., Ishiwa, A., Enomoto-Rogers, Y., Fundador, N.G.V., Sugi, T., Takemae, H., Iwanaga, T., Murakoshi, F., Gong, H., Inomata, A., Horimoto, T., Iwata, T., and Kato, K. (2014). Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro. Scientific Reports 4 (1).
195 195 Ding, Y., Jiang, F., Chen, L., Lyu, W., Chi, Z., and Liu, C. (2020). An alternative hard capsule prepared with the high molecular weight pullulan and gellan: processing, characterization, and in vitro drug release. Carbohydrate Polymers 237: 116172.
196 196 Gadhave, D., Rasal, N., Sonawane, R., Sekar, M., and Kokare, C. (2020). Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: pharmacological and in vitro cytotoxicity studies. International Journal of Biological Macromolecules 16: 906–920.
197 197 Kozlowska, J., Prus-Walendziak, W., Stachowiak, N., Bajek, A., Kazmierski, L., and Tylkowski, B. (2020). Modification of collagen/gelatin/hydroxyethyl cellulose-based materials by addition of herbal extract-loaded microspheres made from gellan gum and xanthan gum. Materials (Basel) 13 (16): 3507.
198 198 Park, A., Choi, J.H., Lee, S., Been, S., Song, J.E., and Khang, G. (2020). Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates. Journal of Tissue Engineering and Regenerative Medicine 14 (11): 1592–1603.
199 199 Park, H., Kim, H., Kim, G.Y., Lee, M.Y., Kim, Y., and Kang, S. (2020). Enhanced biodegradation of hydrocarbons by Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads. Journal of Hazardous Materials 406: 124752.
200 200 Rukmanikrishnan, B., Ismail, F.R.M., Manoharan, R.K., Kim, S.S., and Lee, J. (2020). Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties. International Journal of Biological Macromolecules 148: 1182–1189.
201 201 Sriamornsak, P. (2011). Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery 8 (8): 1009–1023.
202 202 Manjunath, M., Gowda, D.V., Kumar, P., Srivastava, A., Osmani, R.A., and Shinde, C. (2016). Guar gum and its pharmaceutical and biomedical applications. Advanced Science, Engineering and Medicine 8 (8): 589–602.
203 203 Patel, S. and Goyal, A. (2015). Applications of natural polymer Gum Arabic: a review. International Journal of Food Properties 18 (5): 986–998.
204 204 Balasubramaniam, S., Lee, H.C., Lazan, H., Othman, R., and Ali, Z.M. (2005). Purification and properties of a beta-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides. Phytochemistry 66 (2): 153–163.
205 205 Teleman, A., Nordström, M., Tenkanen, M., Jacobs, A., and Dahlman, O. (2003). Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Research 338 (6): 525–534.
206 206 Pasale, S.K., Cerroni, B., Ghugare, S.V., and Paradossi, G. (2014). Multiresponsive Hyaluronan-p(NiPAAm) “Click”-linked hydrogels. Macromolecular Bioscience 14 (7): 1025–1038.
207 207 Enrione, J., Díaz-Calderón, P., Weinstein-Oppenheimer, C.R., Sánchez, E., Fuentes, M.A., Brown, D.I., Herrera, H., and Acevedo, C.A. (2013). Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Bioprocess and Biosystems Engineering 36 (12): 1947–1956.
208 208 Esmonde-White, K.A., Le Clair, S.V., Roessler, B.J., and Morris, M.D. (2008). Effect of conformation and drop properties on surface-enhanced Raman spectroscopy of dried biopolymer drops. Applied Spectroscopy 62 (5): 503–511.
209 209 Figallo, E., Flaibani, M., Zavan, B., Abatangelo, G., and Elvassore, N. (2007). Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnology Progress 23 (1): 210–216.
210 210 Geissler, E., Hecht, A.M., and Horkay, F. (2007). Scaling equations for a biopolymer in salt solution. Physical Review Letters 99 (26): 267801.
211 211 Naskar, B., Ghosh, S., Nagadome, S., Sugihara, G., and Moulik, S.P. (2011). Behavior of the amphiphile CHAPS alone and in combination with the biopolymer inulin in water and isopropanol water media. Langmuir 27 (15): 9148–9159.
212 212 Dhanapal, V. and Subramanian, K. (2014). Recycling of textile dye using double network polymer from sodium alginate and superabsorbent polymer. Carbohydrate Polymers 108: 65–74.
213 213 Sukhlaaied, W. and Riyajan, S.-A. (2013). Synthesis and properties of carrageenan grafted copolymer with poly(vinyl alcohol). Carbohydrate Polymers 98 (1): 677–685.
214 214 Abd alFattah Amara, A. (2008). Polyhydroyalkanoates: from basic research and molecular biology to application. IIUM Engineering Journal 9 (1): 37–73.
215 215 Williams, S.F.a. and Martin, D.P. (2002). Applications of PHAs in medicine and pharmacy. In: Biopolymers, Vol. 4, Polyesters III; Applications and Commercial Products (ed. Y. Doi and A. Steinbüchel), 91–127. Germany: Wiley-VCH.
216 216 Anderson, A.J. and Dawes, E.A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews 54 (4): 450–472.
217 217 Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P.,