Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 38
152 152 Ferrari, R.R., Onuferko, T.M., Monckton, S.K., and Packer, L. (2020). The evolutionary history of the cellophane bee genus Colletes Latreille (Hymenoptera: Colletidae): molecular phylogeny, biogeography and implications for a global infrageneric classification. Molecular Phylogenetics and Evolution 146: 106750.
153 153 Abeer, M.M., Mohd Amin, M.C.I., and Martin, C. (2014). A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. Journal of Pharmacy and Pharmacology 66 (8): 1047–1061.
154 154 Amin, M.C.I.M., Abadi, A.G., and Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers 99: 180–189.
155 155 Ciecholewska-Jusko, D., Zywicka, A., Junka, A., Drozd, R., Sobolewski, P., Migdal, P., Kowalska, U., Toporkiewicz, M., and Fijalkowski, K. (2020). Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydrate Polymers 253: 117247.
156 156 Gao, G., Cao, Y., Zhang, Y., Wu, M., Ma, T., and Li, G. (2020). In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydrate Polymers 248: 116788.
157 157 Islam, S.U., Ul-Islam, M., Ahsan, H., Ahmed, M.B., Shehzad, A., Fatima, A., Sonn, J.K., and Lee, Y.S. (2020). Potential applications of bacterial cellulose and its composites for cancer treatment. International Journal of Biological Macromolecules 168: 301–330.
158 158 Phomrak, S., Nimpaiboon, A., Newby, B.Z., and Phisalaphong, M. (2020). Natural rubber latex foam reinforced with micro- and nanofibrillated cellulose via Dunlop method. Polymers (Basel) 12 (9): 1959.
159 159 Santos, T.A. and Spinace, M.A.S. (2021). Sandwich panel biocomposite of thermoplastic corn starch and bacterial cellulose. International Journal of Biological Macromolecules 167: 358–368.
160 160 Wang, F.P., Zhao, X.J., Wahid, F., Zhao, X.Q., Qin, X.T., Bai, H., Xie, Y.Y., Zhong, C., and Jia, S.R. (2021). Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydrate Polymers 253: 117220.
161 161 Kochumalayil, J.J., Zhou, Q., Kasai, W., and Berglund, L.A. (2013). Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydrate Polymers 93 (2): 466–472.
162 162 Butler, M.F., Clark, A.H., and Adams, S. (2006). Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin. Biomacromolecules 7 (11): 2961–2970.
163 163 Di Martino, A., Sittinger, M., and Risbud, M.V. (2005). Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26 (30): 5983–5990.
164 164 Khan, R. and Dhayal, M. (2009). Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A. Biosensors and Bioelectronics 24 (6): 1700–1705.
165 165 Xu, Z., Gao, N., Chen, H., and Dong, S. (2005). Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11. Langmuir 21 (23): 10808–10813.
166 166 Monteiro, O.A., Jr. and Airoldi, C. (1999). Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions. Journal of Colloid and Interface Science 212 (2): 212–219.
167 167 Zhu, A., Zhang, M., and Shen, J. (2003). Covalent immobilization of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent on biopolymer substrate surface and bloodcompatibility characterization. Journal of Biomaterials Science. Polymer Edition 14 (5): 411–421.
168 168 Kim, D., Petrisor, G., and Yen, T.F. (2005). Evaluation of biopolymer-modified concrete systems for disposal of cathode ray tube glass. Journal of the Air and Waste Management Association 55 (7): 961–969.
169 169 Kim, D., Quinlan, M., and Yen, T.F. (2009). Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Management 29 (1): 321–328.
170 170 Gils, P.S., Ray, D., and Sahoo, P.K. (2009). Characteristics of xanthan gum-based biodegradable superporous hydrogel. International Journal of Biological Macromolecules 45 (4): 364–371.
171 171 Cortes, H., Caballero-Floran, I.H., Mendoza-Munoz, N., Escutia-Guadarrama, L., Figueroa-Gonzalez, G., Reyes-Hernandez, O.D., Gonzalez-Del Carmen, M., Varela-Cardoso, M., Gonzalez-Torres, M., Floran, B., Del Prado-Audelo, M.L., and Leyva-Gomez, G. (2020). Xanthan gum in drug release. Cellular and Molecular Biology (Noisy-le-grand) 66 (4): 199–207.
172 172 Alves, A., Miguel, S.P., Araujo, A., de Jesus Valle, M.J., Sanchez Navarro, A., Correia, I.J., Ribeiro, M.P., and Coutinho, P. (2020). Xanthan Gum-Konjac glucomannan blend hydrogel for wound healing. Polymers (Basel) 12 (1): 99.
173 173 Byram, P.K., Sunka, K.C., Barik, A., Kaushal, M., Dhara, S., and Chakravorty, N. (2020). Biomimetic silk fibroin and xanthan gum blended hydrogels for connective tissue regeneration. International Journal of Biological Macromolecules 165 (Pt A): 874–882.
174 174 Dzionek, A., Wojcieszynska, D., Adamczyk-Habrajska, M., Karczewski, J., Potocka, I., and Guzik, U. (2021). Xanthan gum as a carrier for bacterial cell entrapment: developing a novel immobilised biocatalyst. Materials Science and Engineering C: Materials for Biological Applications 118: 111474.
175 175 Castro, G.R., Panilaitis, B., and Kaplan, D.L. (2008). Emulsan, a tailorable biopolymer for controlled release. Bioresource Technology 99 (11): 4566–4571.
176 176 Ebert, K.H. and Schenk, G. (1968). Mechanisms of biopolymer growth: the formation of dextran and levan. Advances in Enzymology and Related Areas of Molecular Biology 30: 179–221.
177 177 van Oss, C.J. (1989). Energetics of cell-cell and cell-biopolymer interactions. Cell Biophysics 14 (1): 1–16.
178 178 Maciollek, A. and Ritter, H. (2014). One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer. Beilstein Journal of Nanotechnology 5: 380–385.
179 179 Chen, L., Li, J., Ye, Z., Sun, B., Wang, L., Chen, Y., Han, J., Yu, M., Wang, Y., Zhou, Q., Seidler, U., Tian, D., and Xiao, F. (2020). Anti-high mobility group Box 1 neutralizing-antibody ameliorates dextran sodium sulfate colitis in mice. Frontiers in Immunology 11: 585094.
180 180 Bonnaud, M., Weiss, J., and McClements, D.J. (2010). Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan). Journal of Agricultural and Food Chemistry 58 (17): 9770–9777.
181 181 Spyropoulos, F., Ding, P., Frith, W.J., Norton, I.T., Wolf, B., and Pacek, A.W. (2008). Interfacial tension in aqueous biopolymer-surfactant mixtures. Journal of Colloid and Interface Science 317 (2): 604–610.
182 182 Haghighatpanah, N., Mirzaee, H., Khodaiyan, F., Kennedy, J.F., Aghakhani, A., Hosseini, S.S., and Jahanbin, K. (2020). Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. International Journal of Biological Macromolecules 152: 305–313.
183 183 Ganeshkumar, M., Ponrasu, T., Raja, M.D., Subamekala, M.K., and Suguna, L. (2014). Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy