Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 39

Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов

Скачать книгу

is oxidatively methylated to DMAV, which can be reduced to dimethylarsinic acid (DMAIII) (Tsuji et al. 2019; Zhou and Xi 2018). In rodents and humans exposed to extremely high concentrations of arsenic, DMAIII can be further methylated to trimethyl arsenic oxide (TMAVO) and, in rodents, it can be subsequently reduced to volatile trimethylarsine (TMAIII) (Cohen et al. 2013). The reduction reactions are catalyzed by glutathione-S-transferase omega (GSTO); and oxidative methylation is mainly performed by the arsenic-3-methyl transferase enzyme (AS3MT) (Naranmandura et al. 2006; Tsuji et al. 2019; Zhou and Xi 2018).

      Circulating miRNAs Associated with Lead Exposure

      Elemental lead (Pb) is found in lead ore deposits that are distributed throughout the world (Abadin et al. 2007). Lead does not degrade in the environment and is dispersed worldwide as a result of anthropogenic activities such as mining and smelting ore, the manufacture of lead-containing products (lead-containing gasoline, paints, batteries, radiation shields, water pipes, ammunition, ceramics and metal containers), the combustion of coal and oil, and waste incineration (Tokar et al. 2013). Lead is listed as one of the topmost toxic substances, and its toxic properties have been recognized for over 2,000 years (Abadin et al. 2007). However, in the last few decades, there has been increased awareness about the detrimental health effects of low-level lead exposure, particularly in children. This awareness has prompted changes in public health policies, and the result the is phasing out of lead from several sources, including gasoline and paints. Nonetheless, exposure to lead still occurs, primarily from lead-containing paint and water pipes present in older housing, from residues along roadways, or in the form of occupational exposure.

      For the general population, lead exposure occurs orally for the most part; however, inhalation and dermal contact can also occur, albeit rarely, in occupational settings. The health effects caused by lead exposure are diverse (neurological, cardiovascular, renal, hematological, reproductive, developmental, respiratory, hepatic, endocrine, gastrointestinal, musculoskeletal, ocular, and cancer) and depend on numerous factors including age, nutritional status, and life stage (e.g., in utero).

      The blood lead reference value was set at 5 µg/dL in 2012; elevated lead in blood is an indication of excessive exposure (CDC 2012). The most common metric for lead exposure is the concentration of lead in blood, although other measurements of lead in urine, bone, and hair can be used to quantitate exposure (Abadin et al. 2007). Levels of lead in plasma and semen are difficult to measure because lead concentrations in these fluids are often near the lower limits of detection, and lead measurements in saliva and sweat show inconsistent results when compared to blood lead.

Скачать книгу