Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 43

Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов

Скачать книгу

protocol can vary from lab to lab. Traditional approaches to extracting RNA use phenol:chloroform steps to separate RNAs from proteins, then precipitation of RNA with alcohol and pelleting by centrifugation (Mariner et al. 2018). But the size and quantity of circulating miRNAs may make them difficult to pellet, and this leads to greater sample variability. Furthermore, commercialized kits that use column-based purification techniques such as RT-qPCR, next-generation sequencing, or microarray approaches may inhibit the most common downstream miRNA quantification as a result of the incomplete removal of denaturants.

      Other challenges—for instance the normalization of data to a housekeeping circulating miRNA or other genes, low concentration of circulating miRNAs, and identification of acceptable ranges for certain circulating miRNAs in profiles of normal individuals—can contribute to data variability or impede meaningful interpretations (Cui et al. 2019). One study has addressed the effect of different normalization strategies to quantify the circulating miRNAs in human plasma and has found that miR-320d may be the most reliable endogenous circulating miRNA to use for normalization (Faraldi et al. 2019). Alternatively, others have used exogenous, synthetic miRNA mimic from C. elegans as normalization controls (Farina et al. 2014). Although according to some studies storage conditions do not seem to play a role in affecting the stability of circulating miRNAs, multiple freeze thaw cycles should be avoided in order to reduce the degradation of limited circulating miRNA species, and samples should kept at -80 C for long-term storage (Farina et al. 2014; Tiberio et al. 2015). Lastly, no studies to date have addressed the matter of a normal physiological range for circulating miRNAs. However, on the basis of individual variability in circulating miRNAs, these studies are needed before the use of circulating miRNAs as biomarkers in a clinical setting.

      Acknowledgement

      The authors were supported by the National Institute Of Environmental Health Sciences of the National Institutes of Health under Award Numbers R01ES027778, R21ES030334, P30ES030283, and T32ES011564. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

      References

      1 Abadin, H., Ashizawa, A., Stevens, Y.W., Llados, F., Diamond, G., Sage, G., Citra, M., Quinones, A., Bosch, S.J., and Swarts, S.G. (2007). Toxicological Profile for Lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

      2 Aleckovic, M. and Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochim. Biophys. Acta 1855: 24–42.

      3 Alli, L.A. (2015). Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. Interdiscip. Toxicol. 8: 146–150.

      4 Amini, P., Ettlin, J., Opitz, L., Clementi, E., Malbon, A., and Markkanen, E. (2017). An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol. Biol. 18: 22.

      5 Amrani, I., Haddam, N., Garat, A., Allorge, D., Zerimech, F., Schraen, S., Taleb, A., Merzouk, H., Edme, J.L., and Lo-Guidice, J.M. (2020). Exposure to metal fumes and circulating miRNAs in Algerian welders. Int. Arch. Occup. Environ. Health 93: 553–561.

      6 Armstrong, C.W., Stroube, R.B., Rubio, T., Siudyla, E.A., and Miller, G.B. Jr. (1984). Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch. Environ. Health 39: 276–279.

      7 Aryani, A. and Denecke, B. (2015). In vitro application of ribonucleases: Comparison of the effects on mRNA and miRNA stability. BMC Res. Notes 8: 164.

      8 ATSDR. 2019. ATSDR’s Substance Priority List [Online]. ATSDR. https://www.atsdr.cdc.gov/spl/index.html (accessed June 21, 2021).

      9 Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C., and Nolan, B.T. (2017). Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51: 12443–12454.

      10 Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R., and Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12: 643972.

      11 Banerjee, N., Bandyopadhyay, A.K., Dutta, S., Das, J.K., Roy Chowdhury, T., Bandyopadhyay, A., and Giri, A.K. (2017). Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals. Toxicology 378: 10–16.

      12 Banerjee, N., Das, S., Tripathy, S., Bandyopadhyay, A.K., Sarma, N., Bandyopadhyay, A., and Giri, A.K. (2019). MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. Environ. Sci. Pollut. Res. Int. 26: 28052–28061.

      13 Barcelo, M., Castells, M., Bassas, L., Vigues, F., and Larriba, S. (2019). Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci. Rep. 9: 13772.

      14 Beck, R., Bommarito, P., Douillet, C., Kanke, M., Del Razo, L.M., Garcia-Vargas, G., Fry, R.C., Sethupathy, P., and Styblo, M. (2018). Circulating miRNAs associated with arsenic exposure. Environ. Sci. Technol. 52: 14487–14495.

      15 Bernhoft, R.A. (2013). Cadmium toxicity and treatment. Sci. World J. 7: 394652.

      16 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768.

      17 Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G.J., and Guire, D.E. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30: 114–127.

      18 Califf, R.M. (2018). Biomarker definitions and their applications. Exp. Biol. Med. (Maywood) 243: 213–221.

      19 Cardenas-Gonzalez, M., Osorio-Yanez, C., Gaspar-Ramirez, O., Pavkovic, M., Ochoa-Martinez, A., Lopez-Ventura, D., Medeiros, M., Barbier, O.C., Perez-Maldonado, I.N., Sabbisetti, V.S., Bonventre, J.V., and Vaidya, V.S. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 150: 653–662.

      20 CDC. (2012). Response to Advisory Commitee on Childhood Lead Poisoning Prevention recommendations in Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf.

      21 Chen, J., Lai, W., Deng, Y., Liu, M., Dong, M., Liu, Z., Wang, T., Li, X., Zhao, Z., Yin, X., Yang, J., Yu, R., and Liu, L. (2021). MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol. Lett. 345: 12–23.

      22 Cheng, H., Hu, P., Wen, W., and Liu, L. (2018). Relative miRNA and mRNA expression involved in arsenic methylation. PLoS One 13: e0209014.

      23 Cheng, H.H., Yi, H.S., Kim, Y., Kroh, E.M., Chien, J.W., Eaton, K.D., Goodman, M.T., Tait, J.F., Tewari, M., and Pritchard, C.C. (2013). Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8: e64795.

      24 Clarkson, T.W. and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609–662.

      25 Cohen, S.M., Arnold, L.L., Beck, B.D., Lewis, A.S., and Eldan, M. (2013). Evaluation of the carcinogenicity of inorganic arsenic.

Скачать книгу