Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 45
66 Karvinen, S., Sievanen, T., Karppinen, J.E., Hautasaari, P., Bart, G., Samoylenko, A., Vainio, S.J., Ahtiainen, J.P., Laakkonen, E.K., and Kujala, U.M. (2020). MicroRNAs in extracellular vesicles in sweat change in response to endurance exercise. Front Physiol. 11: 676.
67 Klaassen, C.D. (2013). Toxicology the Basic Science of Poisons. New York: Mc Graw Hill.
68 Kobayashi, E., Suwazono, Y., Uetani, M., Kido, T., Nishijo, M., Nakagawa, H., and Nogawa, K. (2006). Tolerable level of lifetime cadmium intake estimated as a benchmark dose low, based on excretion of beta2-microglobulin in the cadmium-polluted regions of the Kakehashi River Basin, Japan. Bull Environ. Contam. Toxicol. 76: 8–15.
69 Kong, A.P., Xiao, K., Choi, K.C., Wang, G., Chan, M.H., Ho, C.S., Chan, I., Wong, C.K., Chan, J.C., and Szeto, C.C. (2012). Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta 413: 1053–1057.
70 Kotorashvili, A., Ramnauth, A., Liu, C., Lin, J., Ye, K., Kim, R., Hazan, R., Rohan, T., Fineberg, S., and Loudig, O. (2012). Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7: e34683.
71 Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11: 597–610.
72 Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., Pezzella, F., Boultwood, J., Wainscoat, J.S., Hatton, C.S., and Harris, A.L. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141: 672–675.
73 Lei, L.J., Zhang, Z., Guo, J.Y., Shi, X.J., Zhang, G.Y., Kang, H., Gao, Y.Y., Hu, X.Q., Wang, T., and Mu, L.N. (2019). MiR-21 as a potential biomarker for renal dysfunction induced by cadmium exposure. Int. J. Clin. Exp. Med. 12: 1631–1639.
74 Li, X., Shi, Y., Wei, Y., Ma, X., Li, Y., and Li, R. (2012). Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ. Toxicol. Pharmacol. 34: 381–387.
75 Li, Y., Li, P., Yu, S., Zhang, J., Wang, T., and Jia, G. (2014). miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol. Lett. 229: 319–326.
76 Li, Y., Ye, F., Wang, A., Wang, D., Yang, B., Zheng, Q., Sun, G., and Gao, X. (2016). Chronic arsenic poisoning probably caused by arsenic-based pesticides: Findings from an investigation study of a household. Int. J. Environ. Res. Public Health 13 (1): 133.
77 Libri, V., Miesen, P., Rij, V.A.N.R.P, and Buck, A.H. (2013). Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci. 70: 3525–3544.
78 Liu, J.Q., Niu, Q., Hu, Y.H., Li, Y., Wang, H.X., Xu, S.Z., Ding, Y.S., Li, S.G., and Ma, R.L. (2018). The bidirectional effects of arsenic on miRNA-21: A systematic review and meta-analysis. Biomed. Environ. Sci. 31: 654–666.
79 Manning, F.C., Blankenship, L.J., Wise, J.P., Xu, J., Bridgewater, L.C., and Patierno, S.R. (1994). Induction of internucleosomal DNA fragmentation by carcinogenic chromate: Relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. Environ. Health Perspect. 102 (Suppl 3): 159–167.
80 Mariner, P.D., Korst, A., Karimpour-Fard, A., Stauffer, B.L., Miyamoto, S.D., and Sucharov, C.C. (2018). Improved detection of circulating miRNAs in serum and plasma following rapid heat/freeze cycling. Microrna 7: 138–147.
81 Michailidi, C., Hayashi, M., Datta, S., Sen, T., Zenner, K., Oladeru, O., Brait, M., Izumchenko, E., Baras, A., Vandenbussche, C., Argos, M., Bivalacqua, T.J., Ahsan, H., Hahn, N.M., Netto, G.J., Sidransky, D., and Hoque, M.O. (2015). Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev. Res. (Phila) 8: 208–221.
82 Michlewski, G. and Caceres, J.F. (2019). Post-transcriptional control of miRNA biogenesis. RNA 25: 1–16.
83 Mitra, P., Goyal, T., Singh, P., Sharma, S., and Sharma, P. (2021). Assessment of circulating miR-20b, miR-221, and miR-155 in occupationally lead-exposed workers of North-Western India. Environ. Sci. Pollut. Res. Int. 28: 3172–3181.
84 Mori, M.A., Ludwig, R.G., Garcia-Martin, R., Brandao, B.B., and Kahn, C.R. (2019). Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metab. 30: 656–673.
85 Motta, V., Angelici, L., Nordio, F., Bollati, V., Fossati, S., Frascati, F., Tinaglia, V., Bertazzi, P.A., Battaglia, C., and Baccarelli, A.A. (2013). Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol. Sci. 132: 307–316.
86 Naranmandura, H., Suzuki, N., and Suzuki, K.T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chem. Res. Toxicol. 19: 1010–1018.
87 Nath, K., Singh, D., Shyam, S., and Sharma, Y.K. (2009). Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb. J. Environ. Biol. 30: 227–234.
88 Newman-Taylor, A. (1998). Cadmium. In Environmental and Occupational Medicine, W.N. Rom ed., Philadelphia, PA: Lippincott-Raven.
89 Noonan, C.W., Sarasua, S.M., Campagna, D., Kathman, S.J., Lybarger, J.A., and Mueller, P.W. (2002). Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ. Health Perspect. 110: 151–155.
90 O’Brien, T.J., Ceryak, S., and Patierno, S.R. (2003). Complexities of chromium carcinogenesis: Role of cellular response, repair and recovery mechanisms. Mutat. Res. 533: 3–36.
91 Ochoa-Martinez, A.C., Araiza-Gamboa, Y., Varela-Silva, J.A., Orta-Garcia, S.T., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2021). Effect of gene-environment interaction (arsenic exposure: PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. Environ. Toxicol. Pharmacol. 81: 103519.
92 Odame, E., Chen, Y., Zheng, S., Dai, D., Kyei, B., Zhan, S., Cao, J., Guo, J., Zhong, T., Wang, L., Li, L., and Zhang, H. (2021). Enhancer RNAs: Transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell. Mol. Biol. Lett. 26: 4.
93 Olsson, I.M., Bensryd, I., Lundh, T., Ottosson, H., Skerfving, S., and Oskarsson, A. (2002). Cadmium in blood and urine: Impact of sex, age, dietary intake, iron status, and former smoking: Association of renal effects. Environ. Health Perspect. 110: 1185–1190.
94 Pechova, A. and Pavlata, L. (2007). Chromium as an essential nutrient: A review. Vet Med (Praha) 52: 1–18.
95 Perez-Vazquez, M.S., Ochoa-Martinez, A.C., Ruiz-Vera, T., Araiza-Gamboa, Y., and Perez-Maldonado, I.N. (2017). Evaluation of epigenetic alterations (miR-126 and miR-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. Environ. Sci. Pollut. Res. Int. 24: 28036–28045.
96 Podgorski, J. and Berg, M. (2020). Global threat of arsenic in groundwater. Science 368: 845–850.
97 Proctor, D.M., Suh, M., Campleman, S.L., and Thompson, C.M. (2014). Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology 325: 160–179.
98 Rager, J.E., Bailey, K.A., Smeester, L., Miller, S.K., Parker, J.S., Laine, J.E., Drobna, Z., Currier, J., Douillet, C., Olshan, A.F., Rubio-Andrade, M., Styblo, M., Garcia-Vargas, G., and Fry, R.C. (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs