Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 44
27 Correia, C.N., Nalpas, N.C., Mcloughlin, K.E., Browne, J.A., Gordon, S.V., Machugh, D.E., and Shaughnessy, R.G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. 8: 118.
28 Cory-Slechta, D.A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology 26: 491–510.
29 Cubadda, F., Jackson, B.P., Cottingham, K.L., Van Horne, Y.O., and Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579: 1228–1239.
30 Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., and Zhang, X. (2019). Circulating microRNAs in cancer: Potential and challenge. Front Genet. 10: 626.
31 de Araujo, M.L., Gomes, B.C., Devoz, P.P., Duarte, N.A.A., Ribeiro, D.L., De Araujo, A.L., Batista, B.L., Antunes, L.M.G., Barbosa, F., JR., Rodrigues, A.S., Rueff, J., and Barcelos, G.R.M. (2021). Association between miR-148a and DNA methylation profile in individuals exposed to lead (Pb). Front Genet. 12: 620744.
32 De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 46: 846–860.
33 Deng, Q., Dai, X., Feng, W., Huang, S., Yuan, Y., Xiao, Y., Zhang, Z., Deng, N., Deng, H., Zhang, X., Kuang, D., Li, X., Zhang, W., Zhang, X., Guo, H., and Wu, T. (2019). Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ. Int. 122: 369–380.
34 Ding, E., Guo, J., Bai, Y., Zhang, H., Liu, X., Cai, W., Zhong, L., and Zhu, B. (2017). MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-kappaB activity in mercury toxicity. Sci. Rep. 7: 15980.
35 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.
36 Dioni, L., Sucato, S., Motta, V., Iodice, S., Angelici, L., Favero, C., Cavalleri, T., Vigna, L., Albetti, B., Fustinoni, S., Bertazzi, P., Pesatori, A., and Bollati, V. (2017). Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur. J. Clin. Nutr. 71: 142–148.
37 Ebert, M.S. and Sharp, P.A. (2012). Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524.
38 Fabbri, M. (2018). MicroRNAs and miRceptors: A new mechanism of action for intercellular communication. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (1737): 20160486.
39 Fabian, M.R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat. Struct. Mol. Biol. 19: 586–593.
40 Faraldi, M., Gomarasca, M., Sansoni, V., Perego, S., Banfi, G., and Lombardi, G. (2019). Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 9: 1584.
41 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.
42 Feng, Y.H. and Tsao, C.J. (2016). Emerging role of microRNA-21 in cancer. Biomed. Rep. 5: 395–402.
43 Ferrari, E. and Gandellini, P. (2020). Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 11: 980.
44 Fowler, B.A., Alexander, J., and Oskarsson, A. (2015). Toxic metals in food. Ch. 6 in Handbook on the Toxicology of Metals, 4th edn., G.F. Nordberg, B.A. Fowler, and M. Nordberg eds., San Diego: Academic Press.
45 Friberg, L. (1983). Cadmium. Annu. Rev. Public Health 4: 367–373.
46 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105.
47 Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., and Catalano, A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17 (11): 3782.
48 Gil, F. and Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 21: 245–255.
49 Gonzalez, H., Lema, C., Kirken, R.A., Maldonado, R.A., Varela-Ramirez, A., and Aguilera, R.J. (2015). Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile: Potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin. Cancer Drugs 2: 138–147.
50 Goyal, T., Mitra, P., Singh, P., Ghosh, R., Sharma, S., and Sharma, P. (2021). Association of microRNA expression with changes in immune markers in workers with cadmium exposure. Chemosphere 274: 129615.
51 Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509–524.
52 Hackenmueller, S.A., Gherasim, C., Walden, J.Q., Law, C.L., and Strathmann, F.G. (2019). Unrecognized elevations of toxic elements in urine and blood highlight the potential need for a broader approach to exposure assessment. J. Anal Toxicol. 43: 284–290.
53 Hammond, S.M. (2015). An overview of microRNAs. Adv. Drug Deliv. Rev. 87: 3–14.
54 Heneghan, H.M., Miller, N., and Kerin, M.J. (2010). MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10: 543–550.
55 Holmes, P., James, K.A., and Levy, L.S. (2009). Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408: 171–182.
56 Hughes, M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133: 1–16.
57 Hunt, K.M., Srivastava, R.K., Elmets, C.A., and Athar, M. (2014). The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett. 354: 211–219.
58 IARC. (1980). Some metals and metallic compounds. IARC Monogr. Eval. Carcinog Risk Chem Hum 23: 1–415.
59 IARC. (1990). Chromium, Nickel and Welding. Lyon: WHO.
60 IARC. (2012). Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100: 11–465.
61 Iorio, M.V. and Croce, C.M. (2012). MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO. Mol. Med. 4: 143–159.
62 Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull. 68: 167–182.
63 Jarup, L. and Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 238: 201–208.
64 Jia, J., Li, T., Yao, C., Chen, J., Feng, L., Jiang, Z., Shi, L., Liu, J., Chen, J., and Lou, J. (2020). Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. Chemosphere 260: 127546.
65 Karagas, M.R., Choi, A.L., Oken, E., Horvat,