Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 44

Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов

Скачать книгу

C.V., Evangelista, A.F., Xavier, D.J., Rassi, D.M., Arns, T., Foss-Freitas, M.C., Foss, M.C., Puthier, D., Sakamoto-Hojo, E.T., Passos, G.A., and Donadi, E.A. (2013). Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res. Notes 6: 491.

      27 Correia, C.N., Nalpas, N.C., Mcloughlin, K.E., Browne, J.A., Gordon, S.V., Machugh, D.E., and Shaughnessy, R.G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. 8: 118.

      28 Cory-Slechta, D.A. (2005). Studying toxicants as single chemicals: Does this strategy adequately identify neurotoxic risk? Neurotoxicology 26: 491–510.

      29 Cubadda, F., Jackson, B.P., Cottingham, K.L., Van Horne, Y.O., and Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 579: 1228–1239.

      30 Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R., and Zhang, X. (2019). Circulating microRNAs in cancer: Potential and challenge. Front Genet. 10: 626.

      31 de Araujo, M.L., Gomes, B.C., Devoz, P.P., Duarte, N.A.A., Ribeiro, D.L., De Araujo, A.L., Batista, B.L., Antunes, L.M.G., Barbosa, F., JR., Rodrigues, A.S., Rueff, J., and Barcelos, G.R.M. (2021). Association between miR-148a and DNA methylation profile in individuals exposed to lead (Pb). Front Genet. 12: 620744.

      32 De Guire, V., Robitaille, R., Tetreault, N., Guerin, R., Menard, C., Bambace, N., and Sapieha, P. (2013). Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 46: 846–860.

      33 Deng, Q., Dai, X., Feng, W., Huang, S., Yuan, Y., Xiao, Y., Zhang, Z., Deng, N., Deng, H., Zhang, X., Kuang, D., Li, X., Zhang, W., Zhang, X., Guo, H., and Wu, T. (2019). Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ. Int. 122: 369–380.

      34 Ding, E., Guo, J., Bai, Y., Zhang, H., Liu, X., Cai, W., Zhong, L., and Zhu, B. (2017). MiR-92a and miR-486 are potential diagnostic biomarkers for mercury poisoning and jointly sustain NF-kappaB activity in mercury toxicity. Sci. Rep. 7: 15980.

      35 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.

      36 Dioni, L., Sucato, S., Motta, V., Iodice, S., Angelici, L., Favero, C., Cavalleri, T., Vigna, L., Albetti, B., Fustinoni, S., Bertazzi, P., Pesatori, A., and Bollati, V. (2017). Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur. J. Clin. Nutr. 71: 142–148.

      37 Ebert, M.S. and Sharp, P.A. (2012). Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524.

      38 Fabbri, M. (2018). MicroRNAs and miRceptors: A new mechanism of action for intercellular communication. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (1737): 20160486.

      39 Fabian, M.R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat. Struct. Mol. Biol. 19: 586–593.

      40 Faraldi, M., Gomarasca, M., Sansoni, V., Perego, S., Banfi, G., and Lombardi, G. (2019). Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 9: 1584.

      41 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.

      42 Feng, Y.H. and Tsao, C.J. (2016). Emerging role of microRNA-21 in cancer. Biomed. Rep. 5: 395–402.

      43 Ferrari, E. and Gandellini, P. (2020). Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 11: 980.

      44 Fowler, B.A., Alexander, J., and Oskarsson, A. (2015). Toxic metals in food. Ch. 6 in Handbook on the Toxicology of Metals, 4th edn., G.F. Nordberg, B.A. Fowler, and M. Nordberg eds., San Diego: Academic Press.

      45 Friberg, L. (1983). Cadmium. Annu. Rev. Public Health 4: 367–373.

      46 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105.

      47 Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., and Catalano, A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17 (11): 3782.

      48 Gil, F. and Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 21: 245–255.

      49 Gonzalez, H., Lema, C., Kirken, R.A., Maldonado, R.A., Varela-Ramirez, A., and Aguilera, R.J. (2015). Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile: Potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin. Cancer Drugs 2: 138–147.

      50 Goyal, T., Mitra, P., Singh, P., Ghosh, R., Sharma, S., and Sharma, P. (2021). Association of microRNA expression with changes in immune markers in workers with cadmium exposure. Chemosphere 274: 129615.

      51 Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509–524.

      52 Hackenmueller, S.A., Gherasim, C., Walden, J.Q., Law, C.L., and Strathmann, F.G. (2019). Unrecognized elevations of toxic elements in urine and blood highlight the potential need for a broader approach to exposure assessment. J. Anal Toxicol. 43: 284–290.

      53 Hammond, S.M. (2015). An overview of microRNAs. Adv. Drug Deliv. Rev. 87: 3–14.

      54 Heneghan, H.M., Miller, N., and Kerin, M.J. (2010). MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10: 543–550.

      55 Holmes, P., James, K.A., and Levy, L.S. (2009). Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408: 171–182.

      56 Hughes, M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133: 1–16.

      57 Hunt, K.M., Srivastava, R.K., Elmets, C.A., and Athar, M. (2014). The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett. 354: 211–219.

      58 IARC. (1980). Some metals and metallic compounds. IARC Monogr. Eval. Carcinog Risk Chem Hum 23: 1–415.

      59 IARC. (1990). Chromium, Nickel and Welding. Lyon: WHO.

      60 IARC. (2012). Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100: 11–465.

      61 Iorio, M.V. and Croce, C.M. (2012). MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO. Mol. Med. 4: 143–159.

      62 Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull. 68: 167–182.

      63 Jarup, L. and Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 238: 201–208.

      64 Jia, J., Li, T., Yao, C., Chen, J., Feng, L., Jiang, Z., Shi, L., Liu, J., Chen, J., and Lou, J. (2020). Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. Chemosphere 260: 127546.

      65 Karagas, M.R., Choi, A.L., Oken, E., Horvat,

Скачать книгу