Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 49

Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов

Скачать книгу

ambiguous or negative immunohistochemistry (Cappellesso et al. 2017).

      Multiple miRNAs were combined to diagnose a MM and can better distinguish it from other tumors or from pleural metastatic carcinoma.

      Benjamin et al. (2010) were the first to find that eleven miRNAs were differentially expressed by gene chip in MPM patients and in twelve tumor patients—namely patients with bladder cancer, breast cancer, intestinal cancer, endometrial cancer, esophageal cancer, renal cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, prostate cancer, and gastric cancer. Among these miRNAs, four (in the miR-193 family, which includes miR-193a-3p/5p and -193b and miR-152) are highly expressed in MPM tissues, whereas seven (in the miR-200 family, which includes miR-141, miR-200a/b/c and miR-429, miR-192, and miR-194) are highly expressed in other tumor tissues. Further validation results showed that the combination of miR-200c/193a-3p was sufficient to distinguish MPM from most tumors except renal cell carcinoma, while miR-192 could be used to distinguish MPM from renal cell carcinoma, liver cancer, and gastrointestinal cancer. Subsequent double-blind experiments showed that the combination of miR-200c/193a-3p could make the accuracy of distinguishing MPM from breast cancer, intestinal cancer, endometrial cancer, renal cancer, lung cancer, ovarian cancer, and other tumors reach 95%. In pleural effusion cells, combining miR-143, miR-210, and miR-200c could discriminate MPM from a further adenocarcinoma with an AUC of 0.9887 (Birnie et al. 2019).

      MicroRNAs Related to the Occurrence and Development of Mesothelioma

      Because different miRNAs may have either carcinogenic or antitumor effects, researchers tried to clarify their role in the occurrence and development of MM. In vitro experiments and animal experiments have found that some miRNAs can inhibit tumor growth by regulating cell cycle, proliferation, clone formation, migration, invasion, apoptosis, and other biological processes. Some studies have also shown that miRNAs can directly inhibit the growth of tumors implanted in experimental mice.

      MicroRNAs Related to Cell Cycle Regulation

      Uncontrolled cell cycle is one of the key steps in tumorigenesis. Almost all tumor cells have cell cycle regulation defects, and MM is no exception. MicroRNAs can regulate the process of cell cycle by targeting key regulators that promote or inhibit cell cycle, such as cyclin-cyclin-dependent protein kinase (CDK) complex or other cell growth regulatory genes. Kubo et al. (2011) and Maki et al. (2012) found that the expression level of miR-34b/c in MM cell lines (H2052 and H28) decreased. After the level of miR-34 in cells was increased by transfection, the expression of the cell cycle-related proteins CDK4, CDK6, and CCND1 was inhibited and the proportion of G1 phase cells was significantly increased. When normal pleural cells (LP-9) were transfected with miR-34 inhibitor, the number of G1 phase cells decreased significantly and the expression levels of miR-34 target genes c-MET and Bcl-2 were significantly upregulated. This indicates that miR-34b/c plays an important role in regulating G1 cell cycle arrest (Tanaka et al. 2013). Some studies have also found that tumor cells are inhibited and in S phase by transfecting miR-31 into MM cell HP-1 or inhibiting the expression of endogenous miR-31 in MM cell H2461 (Ivanov et al. 2010).

      MicroRNAs Related to Proliferation and Clone Formation

      Abnormal cell proliferation is an important feature of tumors, and miRNA can regulate genes related to cell proliferation. Therefore the targeted regulation of miRNAs involved in cell proliferation may be helpful to the treatment of MM, and related studies have been reported. Some studies have transfected miR-31 analogues into MM cells and induced miR-31 precursor expression, and found that cell proliferation and the clone formation ability were significantly weakened. Similarly, there have been studies on the decrease of intracellular target protein expression after the transfection of miR-16 analogue and miR-145 activator into tumor cell lines, and the decrease of target protein expression is positively correlated with miRNA transfection concentration, while cell proliferation and clone formation are inhibited. However, the proliferation of normal mesothelial cells transfected with related miRNAs was not affected (Cioce et al. 2014; Reid et al. 2013). In addition, it has been reported that butterfly element (EphA2) inhibits the growth of MM cells by promoting the expression of let-7a1 and by inhibiting the proto-oncogene RAS. When MM cells are transfected with the precursor of miRNAlet-7, the expression of proto-oncogene RAS is inhibited, and cell proliferation is also inhibited (Khodayari et al. 2011).

      Malignant tumors have the characteristics of metastasis and invasiveness. They can metastasize from the primary site of the tumor to distant ones and invade adjacent tissues or organs. At the cellular level, they show the ability of cell migration and invasion. Identifying metastasis-related factors and understanding their role in the metastasis mechanism are helpful processes for the treatment of MM. Studies have found that the upregulation or deletion of some specific miRNAs makes cancer cells have potential metastasis ability. Fassina et al. (2012) used biphasic MM cell line MSTO-211H for migration and invasion experiments, and found that overexpression of miR-205 can inhibit the migration and invasion of tumor cells. Similarly, an in vitro chemotaxis test—a Boyden chamber assay—has been used to detect that the migration and invasion ability of LP-9 cells transfected with miR-34 inhibitor is significantly enhanced (Tanaka et al. 2013); but some tumor cell lines (H28, H290 and H2052) have increased their cell migration and invasion ability after miR-34 methylation (Muraoka et al. 2013). When miR-34b/c is transfected into tumor cell lines, the ability of tumor cells to form clones is obviously weakened, and the migration and invasion ability of cells is also obviously inhibited (Santarelli et al. 2011). However, through the transwell cell migration test and the cell scratch test, the migration ability of MSTO-211H and NCI-H2052 cell lines transfected with miR-145 analogue was compared with that of non-transfected miR-145 analogue cells, and it was found that migration was significantly weakened in the transfected group and was not found at all in the NCI-H28 cell line (Cioce et al. 2014).

      Apoptosis-related miRNAs

      In the process of tumor formation and malignant transformation, tumor cells escape the monitoring system by avoiding apoptosis and survive in the microenvironment of tumor growth. Studies have found that miRNA may play a role in inducing apoptosis. The expression levels of miR-1(Kirschner et al. 2012) and miR-34b/c(Kubo et al. 2011) decreased in MM cell lines. After transfection of miR-1 and adenovirus carrying miR-34b/c into tumor cell lines, the number of early and late apoptosis of tumor cells increased significantly. It indicated that miR-1 and miR-34b/c could promote the apoptosis of MM cell.

      Inhibition of miRNAs Associated with Explant Tumor

Скачать книгу