Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 50

Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов

Скачать книгу

analysis found that miR-16 analogues also damaged intracellular DNA. When MSTO-211H or MM 05 cell line is transfected with miR-16 analogue, the sensitivity of tumor cells to chemotherapy drugs increases and the efficacy of these drugs is enhanced (Reid et al. 2013). Cioce et al. (2014) inoculated the experimental mice with MSTO-211H. The results showed that eight out of eight mice in the positive control group that were not transfected with miR-145 analogues had solid tumors, while only two out of eight mice in the experimental group that were transfected with miR-145 analogues had tumors; and the tumor volume in the experimental group was significantly smaller than in the positive control group. These experimental results on animals provide more powerful evidence for the usefulness of miRNA in the treatment of MM.

      miRNA is able not only to regulate cell cycle, proliferation, clone formation, migration, invasion ability, and apoptosis or inhibit the growth of explant tumors, but also to improve the sensitivity of tumor cells to traditional radiotherapy by regulating the expression level of some miRNAs in cells. Increased expression of miR-34b/c in tumor cells can destroy DNA double-strand damage repair and inhibit the expression of tumor cell growth-related proteins. It can also enhance the sensitivity of MM cells to radiation, which indicates that the combination of increased expression level of miR-34b/c in cells and radiotherapy may be used for the treatment of MM (Maki et al. 2012). At present, on the basis of this research, the application of miRNA to the treatment of MM produces the following three ideas. First, miRNA antagonist is used to inhibit the effect of carcinogenic miRNA, block endogenous miRNA from being processed by RISC, or lead to the degradation of endogenous miRNA. The second idea is to enhance the expression level of the endogenous tumor suppressor miRNA and inhibit the expression of its target proto-oncogene (Benjamin et al. 2010). The third idea is to use the artificial miRNA (amiRNA) expression vector that targets genes related to the malignant tumor phenotype. These methods could become a new way of treating MM, namely by interfering with the changes in miRNA expression level related to the occurrence and development of the tumor.

      Exosomal miRNA as a Target for Malignant Mesothelioma

      Exosomes provide the opportunity to deliver therapeutic cargo to cancer stroma. The cells were treated with exosome-enriched miR-126. The reduced miR-126 content in fibroblasts in favor of endothelial cells reduced angiogenesis and suppressed cell growth in an miR-126-sensitive environment. Conversely, the accumulation of miR-126 in fibroblasts and the reduced level of miR-126 in endothelial cells induced tube formation in a miR-126-resistant environment via VEGF/EGFL7 upregulation and IRS1-mediated cell proliferation. These findings suggest that the transfer of miR-126 via exosomes represents a novel strategy to inhibit angiogenesis and cell growth in MM (Monaco et al. 2019).

      Munson et al. (2019) employed small molecule inhibitors to block exosome secretion, thereby reducing miR-16-5p exosome loss and replenishing cellular miR-16-5p. These processes led to reduced tumorigenic capacity and miR-16-5p target oncoproteins CCND1 and BCL2. Additionally, the researchers force-fed MM tumor exosomes back to MM tumor cells, which caused cell death and a reduction in the same oncoproteins.

      MicroRNAs Related to Prognosis of Malignant Mesothelioma

      To sum up, although some progress has been made in the research on miRNA in branches of oncology such as the study of MM, there are still many problems. The sensitivity and specificity of miRNA as a biomarker in the diagnosis and prognosis of MM need to be further improved. At present, no miRNA marker has been found that can be used to distinguish between the various pathological tissue subtypes and clinical stages of MMs. Research on miRNA in the treatment of MM is limited to the observation of short-term curative effects displayed by the cell model and the rat tumor model, while research on long-term treatments and their side effects is relatively scarce. However, with the deepening of research, the application of miRNA to the diagnosis and treatment of MM may make substantial progress.

      References

      1 Andersen, M., Grauslund, M., Ravn, J., Sørensen, J.B., Andersen, C.B., and Santoni-Rugiu, E. (2014). Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn 16 (4): 418–430.

      2 Banno, K., Yanokura, M., Iida, M. et al. (2014). Application of microRNA in diagnosis and treatment of ovarian cancer. Biomed. Res. Int. 2014: 232817.

      3 Benjamin, H., Lebanony, D., Rosenwald, S. et al. (2010). A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J Mol Diagn 12 (6): 771–779.

      4 Berindan-Neagoe, I., Monroig Pdel, C., Pasculli, B., and Calin, G.A. (2014). MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J. Clin. 64 (5): 311–336.

      5 Birnie, K.A., Prêle, C.M., Musk, A. et al. (2019). MicroRNA signatures in malignant pleural mesothelioma effusions. Dis. Markers 2019: 8628612.

      6 Busacca, S., Germano, S., De Cecco, L. et al. (2010). MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. Am. J. Respir. Cell Mol. Biol. 42 (3): 312–319.

      7 Calin, G.A., Dumitru, C.D., Shimizu, M. et al. (2002). Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99 (24): 15524–15529.

      8 Cappellesso, R., Galasso, M., Nicolè, L., Dabrilli, P., Volinia, S., and Fassina, A. (2017). miR-130A as a diagnostic marker to differentiate malignant mesothelioma from lung adenocarcinoma in pleural effusion cytology. Cancer Cytopathol. 125 (8): 635–643.

      9 Cappellesso, R., Nicolè, L., Caroccia, B. et al. (2016). Young investigator challenge: microRNA-21/microRNA-126 profiling as a novel tool for the diagnosis of malignant mesothelioma in pleural effusion cytology. Cancer Cytopathol. 124 (1): 28–37.

      10 Casarsa,

Скачать книгу