Principles in Microbiome Engineering. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Principles in Microbiome Engineering - Группа авторов страница 24
204 204 Buchanan, E., Gaunt, W.W., Cardigan, T., et al. (2009). The use of exclusive enteral nutrition for induction of remission in children with Crohn's disease demonstrates that disease phenotype does not influence clinical remission.Aliment Pharmacol Ther. 30 (5): 501–507.
205 205 Rubio, A., Pigneur, B., Garnier‐Lengliné, H., et al. (2011). The efficacy of exclusive nutritional therapy in paediatric Crohn's disease, comparing fractionated oral vs. continuous enteral feeding. Aliment Pharmacol Ther. 33 (12): 1332–1339.
206 206 Levine, A. and Wine, E. (2013). Effects of enteral nutrition on Crohn's disease: clues to the impact of diet on disease pathogenesis. Inflamm. Bowel Dis. 19 (6): 1322–1329.
207 207 Gatti, S., Galeazzi, T., Franceschini, E., et al. (2017). Effects of the exclusive enteral nutrition on the microbiota profile of patients with Crohn's disease: a systematic review. Nutrients. 9 (8): 832.
208 208 Gerasimidis, K., Bertz, M., Hanske, L., et al. (2014). Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm. Bowel Dis. 20 (5): 861–871.
209 209 Quince, C., Ijaz, U.Z., Loman, N., et al. (2015). Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110 (12): 1718–1730.
210 210 Coburn, L.A., Gong, X., Singh, K., et al. (2012). L‐arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One 7 (3): e33546.
211 211 Xue, H., Sufit, A.J.D., and Wischmeyer, P.E. (2011). Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. JPEN J Parenter Enteral Nutr. 35 (2): 188–197.
212 212 Silveira, A.L.M., Ferreira, A., de Oliveira, M.C., et al. (2017). Preventive rather than therapeutic treatment with high fiber diet attenuates clinical and inflammatory markers of acute and chronic DSS‐induced colitis in mice. Eur. J. Nutr. 56 (1): 179–191.
213 213 Singh, N., Gurav, A., Sivaprakasam, S., et al. (2014). Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40 (1): 128–139.
214 214 Maslowski, K., Vieira, A., Ng, A., et al. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268): 1282–1286.
215 215 Schatzkin, A., Mouw, T., Park, Y., et al. (2007). Dietary fiber and whole‐grain consumption in relation to colorectal cancer in the NIH‐AARP diet and health study. Am. J. Clin. Nutr. 85 (5): 1353–1360.
216 216 Park, Y., Hunter, D.J., Spiegelman, D., et al. (2005). Dietary fiber intake and risk of colorectal cancer ‐ a pooled analysis of prospective cohort studies. JAMA 294 (22): 2849–2857.
217 217 Bingham, S.A., Day, N.E., and Luben, R., et al. (2003). Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study (vol 361, pg 1496, 2003). Lancet 362 (9388): 1000.
218 218 Ahuja, N., Easwaran, H., and Baylin, S.B. (2014). Harnessing the potential of epigenetic therapy to target solid tumors. J. Clin. Invest. 124 (1): 56–63.
219 219 Aminov, R.I., Walker, A.W., Duncan, S.H., et al. (2006). Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol. 72 (9): 6371–6376.
220 220 Hold, G.L., Schwiertz, A., Aminov, R.I., et al. (2003). Oligonucleotide probes that detect quantitatively significant groups of butyrate‐producing bacteria in human feces. Appl. Environ. Microbiol. 69 (7): 4320–4324.
221 221 Barcenilla, A., Pryde, S.E., Martin, J.C., et al. (2000). Phylogenetic relationships of butyrate‐producing bacteria from the human gut. Appl. Environ. Microbiol. 66 (4): 1654–1661.
222 222 Schwiertz, A., Le Blay, G., and Blaut, M. (2000). Quantification of different Eubacterium spp. in human fecal samples with species‐specific 16S rRNA‐targeted oligonucleotide probes. Appl. Environ. Microbiol. 66 (1): 375–382.
223 223 Li, Q.R., Ding, C.J., Meng, T., et al. (2017). Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J. Pharmacol. Sci. 135 (4): 148–155.
224 224 Chen, J.Z. and Vitetta, L. (2018). Inflammation‐modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin. Colorectal Cancer 17 (3): E541–E544.
225 225 Schwab, J.M., Chiang, N., Aruta, M., and Serhan, C.N. (2007). Resolvin E1 and protectin D1 activate inflammation‐resolution programmes. Nature 447 (7146): 869–874.
226 226 Macfarlane, S. and Macfarlane, G.T. (2003). Regulation of short‐chain fatty acid production. Proc. Nutr. Soc. 62 (1): 67–72.
227 227 Li, F., Hullar, M.A.J., Schwarz, Y., and Lampe, J.W. (2009). Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit‐ and vegetable‐free diet. J. Nutr. 139 (9): 1685–1691.
228 228 Ho, C.L., Tan, H.Q., Chua, K.J., et al. (2018). Engineered commensal microbes for diet‐mediated colorectal‐cancer chemoprevention. Nat. Biomed. Eng. 2 (1): 27–37.
229 229 McCoy, A.N., Araújo‐Pérez, F., Azcárate‐Peril, A., et al. (2013). Fusobacterium is associated with colorectal adenomas. PLoS One 8 (1): e53653.
230 230 Castellarin, M., Warren, R.L., Freeman, J.D., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22 (2): 299–306.
231 231 Kostic, A.D., Gevers, D., Pedamallu, C.S., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22 (2): 292–298.
232 232 Dejea, C.M., Wick, E.C., Hechenbleikner, E.M., et al. (2014). Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. U.S.A. 111 (51): 18321–18326.
233 233 Al‐Hassi, H.O., Ng, O., and Brookes, M. (2018). Tumour‐associated and non‐tumour‐associated microbiota in colorectal cancer. Gut 67 (2): 395.
234 234 Yang, Z. and Ji, G. (2019). Fusobacterium nucleatum‐positive colorectal cancer. Oncol. Lett. 18 (2): 975–982.
235 235 Mehta, R.S., Nishihara, R., Cao, Y., et al. (2017). Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3 (7): 921–927.
236 236 Martin, C.R., Osadchiy, V., Kalani, A., and Mayer, E.A. (2018). The brain‐gut‐microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6 (2): 133–148.
237 237 Luna, R.A., Savidge, T.C., and Williams, K.C. (2016). The brain‐gut‐microbiome axis: what role does it play in autism spectrum disorder? Curr. Dev. Disord. Rep. 3 (1): 75–81.
238 238 Vuong, H.E. and Hsiao, E.Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81 (5): 411–423.
239 239 Ghaisas, S., Maher, J., and Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome‐gut‐brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative