Principles in Microbiome Engineering. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Principles in Microbiome Engineering - Группа авторов страница 20

Principles in Microbiome Engineering - Группа авторов

Скачать книгу

style="font-size:15px;">      52 52 Hempel, S., Newberry, S.J., Maher, A.R., et al. (2012). Probiotics for the prevention and treatment of antibiotic‐associated diarrhea: a systematic review and meta‐analysis. JAMA 307 (18): 1959–1969.

      53 53 Zarrinpar, A., Chaix, A., Yooseph, S., et al. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20 (6): 1006–1017.

      54 54 David, L.A., Maurice, C.F., Carmody, R.N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484): 559–563.

      55 55 Shi, W., Qi, H., Sun, Q., et al. (2018). gcMeta: A global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 47 (D1): D637–D648.

      56 56 Dhariwal, A., Chong, J., Habib, S., et al. MicrobiomeAnalyst ‐ a web‐based tool for comprehensive statistical, visual and meta‐analysis of microbiome data. Nucleic Acids Res. 45: W180–W188.

      57 57 Patel, J.B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 6 (4): 313–321.

      58 58 Wang, Q., Garrity, G.M., Tiedje, J.M., et al. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 (16): 5261–5267.

      59 59 Weisburg, W.G., Barns, S.M., Pelletier, D.A., et al. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2): 697–703.

      60 60 Hasan, N.A., Young, B.A., Minard‐Smith, A.T., et al. (2014). Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9 (5): e97699.

      61 61 Segata, N., Waldron, L., Ballarini, A., et al. (2012). Metagenomic microbial community profiling using unique clade‐specific marker genes. Nat. Methods 9 (8): 811–814.

      62 62 Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., et al. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1 (6): 6ra14.

      63 63 Szakály, Z., Szente, V., Kövér, G., et al. (2012). The influence of lifestyle on health behavior and preference for functional foods. Appetite 58 (1): 406–413.

      64 64 Zhao, J., Zhang, X., Liu, H., et al. (2019). Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20 (2): 145–154.

      65 65 Fan, P., Liu, P., Song, P., et al. (2017). Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 7 (1): 43412.

      66 66 Karen, L.J. (1999). Small intestinal bacterial overgrowth. Vet. Clin. North Am. Small Anim. Pract. 29 (2): 523–550.

      67 67 Mayneris‐Perxachs, J., Bolick, D.T., Leng, J., et al. (2016). Protein‐ and zinc‐deficient diets modulate the murine microbiome and metabolic phenotype. Am. J. Clin. Nutr. 104 (5): 1253–1262.

      68 68 Singh, R.K., Chang, H.W., Yan, D.I., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15 (1): 73.

      69 69 Reddy, B.S., Weisburger, J.H., and Wynder, E.L. (1975). Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 105 (7): 878–884.

      70 70 Cotillard, A., Kennedy, S.P., Kong, L.C., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 500 (7464): 585–588.

      71 71 Meddah, A.T.T., Yazourh, A., Desmet, I., et al. (2001). The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). J. Appl. Microbiol. 91 (6): 1110–1117.

      72 72 Romond, M.B., Ais, A., Guillemot, F., et al. (1998). Cell‐free whey from milk fermented with Bifidobacterium breve C50 used to modify the colonic microflora of healthy subjects. J. Dairy Sci. 81 (5): 1229–1235.

      73 73 Dominika, Ś., Arjan, N., Karyn, R.P., et al. (2011). The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 145 (1): 267–272.

      74 74 Khan, T.A. and Sievenpiper, J.L. (2016). Controversies about sugars: results from systematic reviews and meta‐analyses on obesity, cardiometabolic disease and diabetes. Eur. J. Nutr. 55 (Suppl. 2): 25–43.

      75 75 Jensen, T., Abdelmalek, M.F., Sullivan, S., et al. (2018). Fructose and sugar: a major mediator of non‐alcoholic fatty liver disease. J. Hepatol. 68 (5): 1063–1075.

      76 76 Ruxton, C.H., Gardner, E.J., and McNulty, H.M. (2010). Is sugar consumption detrimental to health? A review of the evidence 1995–2006. Crit. Rev. Food Sci. Nutr. 50 (1): 1–19.

      77 77 Townsend, G.E., Han, W., Schwalm, N.D., et al. (2019). Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proc. Natl. Acad. Sci. U.S.A. 116 (1): 233–238.

      78 78 Di Rienzi, S.C. and Britton, R.A. (2020). Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Adv. Nutr. (Bethesda, MD) 11 (3): 616–629.

      79 79 Chai, Y., Beauregard, P.B., Vlamakis, H., et al. (2012). Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. MBio 3 (4): e00184–e00112.

      80 80 Tytgat, H.L.P. and de Vos, W.M. (2016). Sugar coating the envelope: glycoconjugates for microbe‐host crosstalk. Trends Microbiol. 24 (11): 853–861.

      81 81 Hanuszkiewicz, A., Pittock, P., Humphries, F., et al. (2014). Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 289 (27): 19231–19244.

      82 82 Eid, N., Enani, S., Walton, G., et al. (2014). The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 3: e46.

      83 83 Parvin, S., Easmin, D., Sheikh, A., et al. (2015). Nutritional analysis of date fruits (Phoenix dactylifera L.) in perspective of Bangladesh. American Journal of Life Sciences 3: 274–278.

      84 84 Francavilla, R., Calasso, M., Calace, L., et al. (2012). Effect of lactose on gut microbiota and metabolome of infants with cow's milk allergy. Pediatr. Allergy Immunol. 23 (5): 420–427.

      85 85 Suez, J., Korem, T., Zeevi, D., et al. (2015). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstetrical & Gynecological Survey 70 (1): 31–32.

      86 86 Halmos, E.P., Christophersen, C.T., Bird, A.R., et al. (2015). Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64 (1): 93–100.

      87 87 Craig, W.J. (2009). Health effects of vegan diets. Am. J. Clin. Nutr. 89 (5): 1627s–1633s.

      88 88 Tomova, A., Bukovsky, I., Rembert, E., et al. (2019). The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 6: 47.

      89 89 Parada Venegas, D., Fuente, M.K.D., Landskron, G., et al. (2019). Short chain fatty acids (SCFAs)‐mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.

      90 90 Glick‐Bauer, M. and Yeh, M.‐C. (2014). The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 6 (11): 4822–4838.

      91 91

Скачать книгу