Thermografie. Eric Rahne

Чтение книги онлайн.

Читать онлайн книгу Thermografie - Eric Rahne страница 45

Автор:
Жанр:
Серия:
Издательство:
Thermografie - Eric Rahne

Скачать книгу

der im Allgemeinen wesentlichste Beugungseffekt der durch die Aperturblende (oder eben die Linseneinfassung) auftretende Frauenhofer-Beugung.

image

      Im Fall der obigen Abbildung kann der Winkelabstand (einschließend zur optischen Mittelachse) der ersten Airy-Scheibe mit der höchsten Strahlungsintensität durch die folgende Gleichung bestimmt werden:

      Gl. 83image

      Unter Voraussetzung ausreichend kleiner Winkel (sin α ≈ α) kann folgende Näherung genutzt werden:

      Gl. 84image

      Der Durchmesser der Scheibe ist damit folgendermaßen bestimmbar:

      Gl. 85image

      Unter nochmaliger Voraussetzung kleiner Winkel (sin α ≈ α) kann wieder vereinfacht werden:

      Gl. 86image

      Wird die hier betrachtete großflächige (weit entfernte) Lichtquelle durch zwei (gleichfalls weit entfernte) - jedoch zueinander naheliegende - Punkt-Lichtquellen ersetzt, dann ergibt sich die durch Rayleigh untersuchte Situation, deren Darstellung auf der folgenden Seite zu sehen ist.

      Das Rayleigh-Kriterium selber definiert (auf heuristischer Grundlage), dass zwei Lichtquellen dann noch als getrennt zu erkennen sind, wenn derer Abstand smin gleich oder größer dem Abstand des ersten Minimums vom Zentrum des Beugungsmusters (Airy-Scheiben) ist.

      Abb. 77: Geometrische Zusammenhänge der Rayleighschen Auflösungsbestimmung (mit freundlicher Genehmigung von Dr. Bernd Schönbach [A24], durch Autor bearbeitet)

      Da das Rayleigh-Kriterium nur anwendbar ist, insofern das Auflösungsvermögen tatsächlich nur durch Beugung begrenzt ist und das zur Identifizierung genutzte Beugungsmuster ein (erkennbares) Minimum aufweist, werden häufig andere Kriterien angewandt.

      Beispielsweise bei Mikroskopen wird neben (statt) dem Rayleigh-Kriterium das Abbesche Verfahren zur Bestimmung der Auflösungsgrenze genutzt. Aufgrund der numerischen Apertur NA des Mikroskops und der Beleuchtungswellenlänge kann nämlich der Abstand zwischen zwei - gerade noch unterscheidbaren - Objektpunkten bereits anhand dieser bestimmt werden. Als Gleichung ausgedrückt:

      Gl. 87image

       Hinweis: Die numerische Apertur NA bezieht sich auf den Linsenradius, weshalb also hier ein Faktor 2 steht, während in die Rayleighschen Gleichung der Linsendurchmesser eingeht.

      Die Berechnung der kleinsten auflösbaren Objektstruktur (der kleinste noch unterscheidbare Abstand von zwei Punkten) kann unter Verwendung der oben beschriebenen Gleichungen und der obigen Abbildung wie folgt durchgeführt (bzw. genähert) werden:

      Gl. 88image

Optisches Instrument Wellenlänge λmittel Auflösungsgrenze smin
optisches Mikroskop (sichtbares Licht) 0,3 μm 0,23 μm
kurzwellige Thermokamera mit Mikroskoplinse 3,5 μm 2,67 μm
langwellige Thermokamera mit Mikroskoplinse 10 μm 7,62 μm

      Aufgrund der obigen Ausführungen kann festgestellt werden, dass die durch die Beugung in der Thermografie verursachte Auflösungsbegrenzung selbst im Falle mikroskopischer Messungen nur sehr selten auftritt. Die bereits erwähnten übrigen optischen und sensortechnischen Bedingungen begrenzen die Auflösung schon lange, bevor die Beugung eine Einschränkung verursachen würde.

      Die auf Erfassung von Infrarotstrahlung basierende berührungslose Temperaturbestimmung erfordert eine numerische Verarbeitung des gemessenen Strahlungsintensitätswerts. Dies basiert auf dem mathematischen Modell, welches im theoretischen Kapitel als thermodynamische Grundgleichung diskutiert wurde. Dazu erforderlich ist natürlich vorab die Digitalisierung der analogen Detektorsignale, wobei die hierfür gültige theoretischen (mathematischen und messtechnischen) Regeln einzuhalten sind. Diese Regeln haben gleichzeitig einen starken Einfluss auf die Richtigkeit der Messergebnisse des berührungslosen Temperatur-Messgerätes (Infrarot-Thermometer und / oder Thermokamera) oder auch generell auf die messtechnische Anwendbarkeit des Gerätes.

      2.2.1. Erzeugung zeitdiskreter Signalfolgen aus kontinuierlichen Signalen

      Die Zeitkonstante periodischer Temperaturänderungen des Messobjekts (besser die Temperaturprozessfrequenz) stellt aufgrund des Funktionsprinzips der Thermokameras strenge Anforderungen bei der Signalbearbeitung dar. Wärmebildkameras (wie auch alle anderen digitalen Messsysteme) müssen die Signalabtastung dem Nyquist-Shannon-Abtasttheorem (von Wladimir Kotelnikow schon früher, bereits 1933 formuliert) entsprechend durchführen. Dieses Theorem besagt, dass mindestens die doppelte Frequenz der höchstfrequenten analogen Signalkomponente als Abtastfrequenz benötigt wird, um die für die korrekte Rekonstruktion des Signals erforderlichen Stützwerte zu erhalten. Wenn dieses Gesetz nicht eingehalten wird, tritt die sogenannte Unterabtastung (Aliasing) auf, welche bei einer periodischen Temperaturschwankung dazu führen würde, dass die Temperaturänderung als wesentlich langsamerer Vorgang (mit niedriger Frequenz) abgebildet würde, als der tatsächliche Prozess. (Siehe auch die folgende Abbildung.) Dies würde in vielen Fällen zu völlig falschen Schlussfolgerungen führen.

image

Скачать книгу