Interventional Cardiology. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Interventional Cardiology - Группа авторов страница 42
2 2 Pahwa R and Jialal I. Atherosclerosis StatPearls Treasure Island (FL); 2020.
3 3 Wu MY, Li CJ, Hou MF and Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci. 2017; 18.
4 4 Insull W, Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 2009; 122:S3–S14.
5 5 Forstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017; 120:713–735.
6 6 Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on A. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009; 54:2129–38.
7 7 Libby P, Buring JE, Badimon L, Atherosclerosis. Nat Rev Dis Primers. 2019; 5:56.
8 8 Gimbrone MA, Jr., Garcia‐Cardena G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016; 118:620–36.
9 9 Ghattas A, Griffiths HR, Devitt A, Monocytes in coronary artery disease and atherosclerosis: where are we now? J Am Coll Cardiol. 2013; 62:1541–51.
10 10 Gimbrone MA, Jr., Garcia‐Cardena G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013; 22:9–15.
11 11 Davies PF. Flow‐mediated endothelial mechanotransduction. Physiol Rev. 1995; 75:519–60.
12 12 Gimbrone MA, Jr., Topper JN, Nagel T, Anderson KR and Garcia‐Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000; 902:230–9; discussion 239–40.
13 13 Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990; 50:537–44.
14 14 Egan K, FitzGerald GA. Eicosanoids and the vascular endothelium. Handb Exp Pharmacol. 2006:189–211.
15 15 Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7:803–15.
16 16 Stevens T, Garcia JG, Shasby DM, Bhattacharya J and Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol. 2000; 279:L419–22.
17 17 De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine‐induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995; 96:60–8.
18 18 Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem. 2006; 13:1877–93.
19 19 Gainetdinov RR, Premont RT, Bohn LM, et al. Desensitization of G protein‐coupled receptors and neuronal functions. Annu Rev Neurosci. 2004; 27:107–44.
20 20 Pober JS. Effects of tumour necrosis factor and related cytokines on vascular endothelial cells. Ciba Found Symp. 1987; 131:170–84.
21 21 Petrache I, Birukova A, Ramirez SI, et al. The role of the microtubules in tumor necrosis factor‐alpha‐induced endothelial cell permeability. Am J Respir Cell Mol Biol. 2003; 28:574–81.
22 22 Cybulsky MI, Gimbrone MA, Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991; 251:788–91.
23 23 Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine‐induced endothelial protein that binds to lymphocytes. Cell. 1989; 59:1203–11.
24 24 Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol. 2008; 130:147–58.
25 25 Frangogiannis NG, Mendoza LH, Ren G, et al. MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol. 2003; 285:H483–92.
26 26 Hansson GK, Libby P. The immune response in atherosclerosis: a double‐edged sword. Nat Rev Immunol. 2006; 6:508–19.
27 27 Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002; 91:281–91.
28 28 Verma S, Devaraj S, Jialal I. Is C‐reactive protein an innocent bystander or proatherogenic culprit? C‐reactive protein promotes atherothrombosis. Circulation. 2006; 113:2135–50; discussion 2150.
29 29 Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature. 2008; 451:904–13.
30 30 Herder M, Arntzen KA, Johnsen SH, et al. Long‐term use of lipid‐lowering drugs slows progression of carotid atherosclerosis: the Tromso study 1994 to 2008. Arterioscler Thromb Vasc Biol. 2013; 33:858–62.
31 31 Puri R, Nissen SE, Shao M, et al. Antiatherosclerotic effects of long‐term maximally intensive statin therapy after acute coronary syndrome: insights from Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin. Arterioscler Thromb Vasc Biol. 2014; 34:2465–72.
32 32 Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002; 43:1363–79.
33 33 Rader DJ, Hovingh GK. HDL and cardiovascular disease. The Lancet. 2014; 384:618–625.
34 34 Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357:2109–22.
35 35 Toth PP, Barter PJ, Rosenson RS, et al. High‐density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013; 7:484–525.
36 36 Degoma EM, Rader DJ. Novel HDL‐directed pharmacotherapeutic strategies. Nat Rev Cardiol. 2011; 8:266–77.
37 37 Kratzer A, Giral H, Landmesser U. High‐density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res. 2014; 103:350–61.
38 38 Boren J, Williams KJ. The central role of arterial retention of cholesterol‐rich apolipoprotein‐B‐containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016; 27:473–83.
39 39 Miller YI, Choi SH, Wiesner P et al. Oxidation‐specific epitopes are danger‐associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011; 108:235–48.
40 40 Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45:993–1007.
41 41 Linton MRF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. In: KR Feingold, B Anawalt, A Boyce, et al. eds. Endotext South Dartmouth (MA); 2000.
42 42 Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017; 13:368–380.
43 43 Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med. 2001; 11:93–102.
44 44 Stocker R, Keaney JF, Jr. Role of oxidative modifications in atherosclerosis.