Interventional Cardiology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Interventional Cardiology - Группа авторов страница 44

Interventional Cardiology - Группа авторов

Скачать книгу

Goldstein JA, Demetriou D, Grines CL, et al. Multiple complex coronary plaques in patients with acute myocardial infarction. N Engl J Med. 2000; 343:915–22.

      88 88 Kolodgie FD, Burke AP, Farb A, et al. The thin‐cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001; 16:285–92.

      89 89 Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003; 349:2316–25.

      90 90 van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994; 89:36–44.

      91 91 Mittleman MA, Mostofsky E. Physical, psychological and chemical triggers of acute cardiovascular events: preventive strategies. Circulation. 2011; 124:346–54.

      92 92 Widlansky ME, Gokce N, Keaney JF, Jr., Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003; 42:1149–60.

      93 93 Benagiano M, D'Elios MM, Amedei A, et al. Human 60‐kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. Journal of Immunology. 2005; 174:6509–17.

      94 94 Ludwig A, Berkhout T, Moores K, et al. Fractalkine is expressed by smooth muscle cells in response to IFN‐gamma and TNF‐alpha and is modulated by metalloproteinase activity. Journal of Immunology. 2002; 168:604–12.

      95 95 Fong AM, Robinson LA, Steeber DA, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. The Journal of Experimental Medicine. 1998; 188:1413–9.

      96 96 Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol. 2017; 14:21–29.

      97 97 Quillard T, Franck G, Mawson T, et al. Mechanisms of erosion of atherosclerotic plaques. Curr Opin Lipidol. 2017; 28:434–441.

      98 98 Hao H, Gabbiani G, Camenzind E, Bacchetta M, et al. Phenotypic modulation of intima and media smooth muscle cells in fatal cases of coronary artery lesion. Arterioscler Thromb Vasc Biol. 2006; 26:326–32.

      99 99 Finn AV, Otsuka F. Neoatherosclerosis: a culprit in very late stent thrombosis. Circ Cardiovasc Interv. 2012; 5:6–9.

      100 100 Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare‐metal and drug‐eluting stents. J Am Coll Cardiol. 2011; 57:1314–22.

      101 101 Park SJ, Kang SJ, Virmani R, et al. In‐stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012; 59:2051–7.

      102 102 Inoue K, Abe K, Ando K, et al. Pathological analyses of long‐term intracoronary Palmaz‐Schatz stenting; Is its efficacy permanent? Cardiovasc Pathol. 2004; 13:109–15.

      103 103 Nakazawa G, Vorpahl M, Finn AV, et al. One step forward and two steps back with drug‐eluting‐stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imaging. 2009; 2:625–8.

      104 104 Kang SJ, Lee CW, Song H, et al. OCT analysis in patients with very late stent thrombosis. JACC Cardiovasc Imaging. 2013; 6:695–703.

      105 105 Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002; 15:439–46.

      106 106 Shishikura D, Kataoka Y, Di Giovanni G, et al. Progression of ultrasound plaque attenuation and low echogenicity associates with major adverse cardiovascular events. Eur Heart J. 2020.

      107 107 Wu X, Mintz GS, Xu K, et al. The Relationship Between Attenuated Plaque Identified by Intravascular Ultrasound and No‐Reflow After Stenting in Acute Myocardial Infarction. The HORIZONS‐AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) Trial. 2011; 4:495–502.

      108 108 Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: insights from follow‐up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000; 35:106–111.

      109 109 Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004; 110:3424–3429.

      110 110 Lee T, Kakuta T, Yonetsu T, et al. Assessment of echo‐attenuated plaque by optical coherence tomography and its impact on post‐procedural creatine kinase‐myocardial band elevation in elective stent implantation. JACC: Cardiovascular Interventions. 2011; 4:483–491.

      111 111 Kataoka Y, Wolski K, Uno K, et al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound. J Am Coll Cardiol. 2012; 59:1592–1597.

      112 112 Pu J, Mintz GS, Biro S, et al. Insights into echo‐attenuated plaques, echolucent plaques, and plaques with spotty calcification: novel findings from comparisons among intravascular ultrasound, near‐infrared spectroscopy, and pathological histology in 2,294 human coronary artery segments. J Am Coll Cardiol. 2014; 63:2220–2233.

      113 113 Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002; 106:2200–6.

      114 114 Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996; 93:1354–63.

      115 115 Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000; 20:1262–75.

      116 116 Hong MK, Mintz GS, Lee CW, et al. A three‐vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin‐cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris. Am J Cardiol. 2008; 101:568–72.

      117 117 Stone GW, Maehara A, Lansky AJ, et al. A prospective natural‐history study of coronary atherosclerosis. N Engl J Med. 2011; 364:226–35.

      118 118 Calvert PA, Obaid DR, O'Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH‐IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging. 2011; 4:894–901.

      119 119 Cheng JM, Garcia‐Garcia HM, de Boer SP, et al. in vivo detection of high‐risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO‐IVUS study. Eur Heart J. 2014; 35:639–47.

      120 120 Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006; 47:C13–8.

      121 121 Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation. 2012; 126:172–181.

      122 122 Ino Y, Kubo T, Tanaka A, et al. Difference of culprit lesion morphologies between ST‐segment elevation myocardial infarction and non‐ST‐segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv. 2011; 4:76–82.

      123 123

Скачать книгу