Interventional Cardiology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Interventional Cardiology - Группа авторов страница 43

Interventional Cardiology - Группа авторов

Скачать книгу

regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004; 76:760–81.

      46 46 Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004; 4:181–9.

      47 47 Octavia Y, Brunner‐La Rocca HP, Moens AL. NADPH oxidase‐dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic Biol Med. 2012; 52:291–7.

      48 48 Opitz N, Drummond GR, Selemidis S, et al. The 'A's and 'O's of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radic Biol Med. 2007; 42:175–9.

      49 49 Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda). 2006; 21:269–80.

      50 50 Briones AM, Tabet F, Callera GE, et al. Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. J Am Soc Hypertens. 2011; 5:137–53.

      51 51 Akki A, Zhang M, Murdoch C, et al. NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol. 2009; 47:15–22.

      52 52 Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 2017; 19:42.

      53 53 Vendrov AE, Hakim ZS, Madamanchi NR, et al. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol. 2007; 27:2714–21.

      54 54 Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012; 33:829–37, 837a–837d.

      55 55 Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox‐sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A. 1996; 93:9114–9.

      56 56 Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991; 88:4651–5.

      57 57 Zeiher AM, Fisslthaler B, Schray‐Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res. 1995; 76:980–6.

      58 58 Teplyakov AI. Endothelin‐1 involved in systemic cytokine network inflammatory response at atherosclerosis. Journal of cardiovascular pharmacology. 2004; 44 Suppl 1:S274–5.

      59 59 Lerman A, Edwards BS, Hallett JW, et al. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med. 1991; 325:997–1001.

      60 60 Dang A, Wang B, Li W, et al. Plasma endothelin‐1 levels and circulating endothelial cells in patients with aortoarteritis. Hypertension research: official journal of the Japanese Society of Hypertension. 2000; 23:541–4.

      61 61 McCarron RM, Wang L, Stanimirovic DB, Spatz M. Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neuroscience letters. 1993; 156:31–4.

      62 62 Halim A, Kanayama N, el Maradny E, et al. Coagulation in vivo microcirculation and in vitro caused by endothelin‐1. Thrombosis research. 1993; 72:203–9.

      63 63 Li H, Forstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013; 13:161–7.

      64 64 Antoniades C, Shirodaria C, Crabtree M, et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation. 2007; 116:2851–9.

      65 65 Porkert M, Sher S, Reddy U, et al. Tetrahydrobiopterin: a novel antihypertensive therapy. J Hum Hypertens. 2008; 22:401–7.

      66 66 Stroes E, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1997; 99:41–6.

      67 67 Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007; 56:666–74.

      68 68 Ueda S, Matsuoka H, Miyazaki H, et al. Tetrahydrobiopterin restores endothelial function in long‐term smokers. J Am Coll Cardiol. 2000; 35:71–5.

      69 69 Madamanchi NR and Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007; 100:460–73.

      70 70 Nishino T, Okamoto K, Eger BT, et al. Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008; 275:3278–89.

      71 71 Patetsios P, Song M, Shutze WP, et al. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol. 2001; 88:188–91, A6.

      72 72 Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014; 114:1852–66.

      73 73 Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation. 1989; 80:1747–56.

      74 74 Clinton SK, Underwood R, Hayes L, et al. Macrophage colony‐stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. The American Journal of Pathology. 1992; 140:301–16.

      75 75 Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 2020; 17:387–401.

      76 76 Fernandez DM, Rahman AH, Fernandez NF, et al. Single‐cell immune landscape of human atherosclerotic plaques. Nat Med. 2019; 25:1576–1588.

      77 77 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994; 94:2493–503.

      78 78 Schwartz RS, Topol EJ, Serruys PW, et al. Artery size, neointima, and remodeling: time for some standards. J Am Coll Cardiol. 1998; 32:2087–94.

      79 79 Falk E, Nakano M, Bentzon JF, et al. Update on acute coronary syndromes: the pathologists' view. Eur Heart J. 2013; 34:719–28.

      80 80 Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. The N Engl J Med. 1997; 336:1276–82.

      81 81 Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation. 2004; 110:278–84.

      82 82 Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992; 326:242–50.

      83 83 Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. 1996; 94:2013–20.

      84 84 Mauriello A, Sangiorgi G, Fratoni S, et al. Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree: a histopathologic study of patients dying of acute myocardial infarction. J Am Coll Cardiol. 2005; 45:1585–93.

      85 85 Spagnoli LG, Bonanno E, Mauriello A, et al. Multicentric inflammation in epicardial coronary arteries of patients dying of acute myocardial infarction. J Am Coll Cardiol. 2002; 40:1579–88.

      86 86

Скачать книгу