Core Microbiome. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Core Microbiome - Группа авторов страница 18
45 45 Compant, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry May 1 42 (5): 669–678.
46 46 Compant, S., Duffy, B., Nowak, J., Clément, C., and Barka, E.A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology Sep 1 71 (9): 4951–4959.
47 47 Sapers, G.M., Gorny, J.R., and Yousef, A.E., (editors). (2005). Microbiology of Fruits and Vegetables. CRC Press. Aug 29.
48 48 Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-mosqueda, M., and Glick, B.R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research Feb 1 183: 92–99.
49 49 Reinhold-Hurek, B. and Hurek, T. (2011). Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology Aug 1 14 (4): 435–443.
50 50 Chaturvedi, H., Singh, V., and Gupta, G. (2016). Potential of bacterial endophytes as plant growth-promoting factors. Journal of Plant Pathology and Microbiology 7 (9): 1–6.
51 51 Anjum, R., Afzal, M., Baber, R., Khan, M.A., Kanwal, W., Sajid, W., and Raheel, A. (2019). Endophytes: As potential biocontrol agent—review and future prospects. The Journal of Agricultural Science 11: 113.
52 52 Sheoran, N., Nadakkakath, A.V., Munjal, V., Kundu, A., Venugopal, V., Rajamma, S., Eapen, S.J., and Kumar, A. (2015). Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research Apr 173: 66–78.
53 53 Sessitsch, A., Reiter, B., and Berg, G. (2004). Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology May 50: 239–249.
54 54 Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M., and Lelie, D.V.D. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences Nov 21 (6): 583–606.
55 55 Martinuz, A., Schouten, A., and Sikora, R.A. (2012). Systemically induced resistance and microbial competitive exclusion: Implications on biological control. Phytopathology Mar 102 (3): 260–266.
56 56 Rodriguez, R.J., White, J.F., Jr, Arnold, A.E., and Redman, A.R. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist Apr 182 (2): 314–330.
57 57 Trover, M.F., Scavone, P., Platero, R., de Souza, E.M., Fabiano, E., and Rusconi, F. (2018). Herbaspirillum seropedicae differentially expressed genes in response to iron availability. Frontiers in Microbiology Jul 3 (9): 1430.
58 58 Zeng, J., Xu, T., Cao, L., Tong, C., Zhang, X., Luo, D., Han, S., Pang, P., Fu, W., Yan, J., and Liu, X. (2018). The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microbial Ecology Nov 76 (4): 1021–1029.
59 59 Mousa, W.K., Shearer, C., Limay-Rios, V., Ettinger, C.L., Eisen, J.A., and Raizada, M.N. (2016). Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nature Microbiology Sep 26 1 (12): 1–2.
60 60 Arnold, A.E., Mejía, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N., and Herre, E.A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences Dec 23 100 (26): 15649–15654.
61 61 Mousa, W.K. and Raizada, M.N. (2013). The diversity of antimicrobial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Frontiers in Microbiology Mar 27 4: 65.
62 62 Kusari, S., Hertweck, C., and Spiteller, M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemistry & Biology Jul 27 19 (7): 792–798.
63 63 Silva, G.H., Teles, H.L., Zanardi, L.M., Young, M.C., Eberlin, M.N., Hadad, R., Pfenning, L.H., Costa-Neto, C.M., Castro-Gamboa, I., Da Silva Bolzani, V., and Araújo, Â.R. (2006). Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry Sep 1 67 (17): 1964–1969.
64 64 Abdallah, R.A., Steel, C., Garagounis, C., Nefzi, A., Jabnoun-Khiareddine, H., Papadopoulou, K.K., and Daami-Remadi, M. (2017). Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Protection Sep 1 99: 45–58.
65 65 Munjal, V., Nadakkakath, A.V., Sheoran, N., Kundu, A., Venugopal, V., Subaharan, K., Rajamma, S., Eapen, S.J., and Kumar, A. (2016). Genotyping and identification of broad-spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biological Control Jan 1 92: 66–76.
66 66 Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., and Mo, M. (2010). Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology Mar 126 (3): 417–422.
67 67 Athukorala, S.N., Fernando, W.D., Rashid, K.Y., and De Kievit, T. (2010). The role of volatile and non-volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Science and Technology Jan 1 20 (8): 875–890.
68 68 Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology Jan 81 (6): 1001–1012.
69 69 Pieterse, C.M., Van Der Does, D., Zamioudis,