Core Microbiome. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Core Microbiome - Группа авторов страница 20
96 96 Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Von Mering, C., and Vorholt, J.A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal Jul 6 (7): 1378–1390.
97 97 Boller, T. (1993). “Antimicrobial Functions of the Plant Hydrolases, Chitinase and ß-1,3-Glucanase,” in Mechanisms of Plant Defense Responses. Springer 2: 391–400.
98 98 Essghaier, B., Hedi, A., Halaoui, M.R., Boudabous, A., and Sadfi-Zouaoui, N. (2012). In vivo and in vitro evaluation of antifungal activities from a halotolerant Bacillus subtilis strain J9. African Journal of Microbiology May 23 6 (19): 4073–4083.
99 99 Urquhart, E.J. and Punja, Z.K. (2002). Hydrolytic enzymes and antifungal compounds produced by Tilletiopsis species, phyllosphere yeasts that are antagonists of powdery mildew fungi. Canadian Journal of Microbiology Mar 1 48 (3): 219–229.
100 100 Muhammad, S., Nicole, M., Zahida, H.P., and Milton, B.T. (2017). Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology Jan 20 8 (41): 1–10.
101 101 Eitzen, K., Sengupta, P., Kroll, S., Kemen, E., and Doehlemann, G. (2020). An antagonistic driver of the microbial phyllosphere suppresses infection of Arabidopsis thaliana by the oomycete pathogen Albugo laibachii via a secreted hydrolase. bioRxiv Apr 21: 1–36.
102 102 Lopez-Mondejar, R., Ros, M., and Pascual, J.A. (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control Jan 56 (1): 59–66.
103 103 Volks, B. and May, R. (2001). Biological control of Pseudomonas syringae PV. glycine by epiphytic bacteria under field conditions. Microbial Ecology Feb 41: 132–139.
104 104 Simionato, A.S., Navarro, M.O.P., de Jesus, M.L.A, Barazetti, A.R., da Silva, C.S., and Simoes, G.C. (2017). The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain. Front Microbiology Jun 14 8 (1102): 1–9.
105 105 Chin-A-Woeng, T.F.C.Bloemberg, G.V., and Lugtenberg, B.J.J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. The New Phytologist Mar 3 157: 503–523.
106 106 Yasmin, S., Hafeez, F.Y., Mirza, M.S., Rasul, M., Arshad, H.M.I., Zubair, M., and Iqbal, M. (2017). Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiology Sep 26 8 (1895): 1–23.
107 107 Noor, A.I., Abdiad, A.N., and Aris, T.W. (2016). Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian Journal of Plant Pathology Mar 15 10 (1-2): 1–8.
108 108 Vogel, C., Bodenhausen, N., Gruissem, W., and Vorholt, J.A. (2016). The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytologist Oct 212 (1): 192–207.
109 109 Ryffel, F., Helfrich, E.J., Kiefer, P., Peyriga, L., Portais, J.C., Piel, J., and Vorholt, J.A. (2016). Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. The ISME Journal Mar 10 (3): 632–643.
110 110 Lee, G.H. and Ryu, C.M. (2016). Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant Disease Oct 14 100 (10): 2099–2105.
111 111 Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., and Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution Mar 3 (3): 430–439.
112 112 Jeffrey, B.J., Gary, E.V., Fanny, B.I., Aleksa, O., Mine, H.W., Lee, E.J., Botond, B., Jason, C.H., and Timur, M. (2012). Considerations for using bacteriophages for plant disease control. Bacteriophage. Oct 1 2 (4): 208–214.
113 113 Marie, L., Wenke, S., Dieter, V., Tom, E., Babette, M., Els, P., Roeland, S., and Sarah, L. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology July 14 11 (1610): 1–18.
114 114 Qin, C., Tao, J., Liu, T., Liu, Y., Xiao, N., Li, T., Gu, Y., and Meng, D. (2019). Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express Mar 28 9 (42): 1–13.
115 115 Hao, W.N., Li, H., Hu, M.Y., Yang, L., and Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology 59: 316–323.
116 116 Card, S.D., Walter, M., Jaspers, M.V., Sztejnberg, A., and Stewart, A. (2009). Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australas Plant Pathology Mar 38 (2): 183–192.
117 117 Fu, G., Huang, S., Ye, Y., Wu, Y., Cen, Z., and Lin, S. (2010). Characterization of a bacterial biocontrol strain B106 and its efficacy on controlling banana leaf spot and post-harvest anthracnose diseases. Biological Control 55 (1): 1–10.
118 118 Alexander, B.J.R. and Stewart, A. (2001). Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). New Zealand Journal of Crop and Horticultural Science 29 (3): 159–169.
119 119 Abraham, A., Philip, S., Jacob, C.K., and Jayachandran, K. (2013). Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl Oct 58 (5): 675–684.
120 120 Hoitink, H.A. and Boehm, M.J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology Sep 37 (1): 427–446.
121 121 Fernando, W.D., Ramarathnam, R., Krishnamoorthy, A.S.,