Essential Concepts in MRI. Yang Xia

Чтение книги онлайн.

Читать онлайн книгу Essential Concepts in MRI - Yang Xia страница 10

Автор:
Жанр:
Серия:
Издательство:
Essential Concepts in MRI - Yang Xia

Скачать книгу

force the net magnetization away from the thermal equilibrium into a non-equilibrium state. Finally, the response of the net magnetization to this perturbation is recorded via the detector, where the recording is termed as the NMR or MRI signal. Final post-acquisition signal processing generates an NMR spectrum or an MRI image. These three sequential stages in an NMR or MRI experiment are controlled by a list of individual commands, and each occurs at a different time. This list of commands is called a pulse sequence. Chapter 5, Chapter 6, and Chapter 13 will discuss the details of these instrumentational and experimental aspects.

      Figure 1.2 The B0 direction in NMR and MRI. (a) Vertical-bore superconducting magnet, which is common for NMR spectrometers in science and industry laboratories. (b) “Horizontal double-donut” magnet for “open” MRI. (c) Electromagnet or magnet in “vertical double-donut” MRI. (d) Horizontal-bore superconducting magnet, which is common for whole-body imagers for humans or animals.

      Figure 1.3 The positive directions of rotations in a 3D Cartesian coordinate system, (a) when one looks into the +z axis, and (b) when one looks into the +x axis.

      1.3 MAJOR MILESTONES IN THE HISTORY OF NMR AND MRI

      Figure 1.4 The first NMR spectrum of ethanol (CH3CH2OH), which demonstrated the huge potential of NMR spectroscopy by identifying three sets of non-equivalent 1H nuclei in the same molecule. Three separate peaks corresponded to the resonant frequencies of the 1H nuclei in the OH, CH2, and CH3 groups, respectively. Furthermore, the relative areas under the three peaks corresponded to the number of protons in each different chemical environment. Source: Reproduced with permission from Arnold et al. [9].

      Figure 1.5 The first proton NMR image of two tubes of H2O, which was produced by P.C. Lauterbur by combining four projections taken from different angles from his setup on a Varian A-60 spectrometer, which is currently on display at the State University of New York at Stony Brook. Source: Reproduced with permission

Скачать книгу