Perovskite Materials for Energy and Environmental Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Perovskite Materials for Energy and Environmental Applications - Группа авторов страница 18
Then from the right side of the screen window of the energy bands one can select choices (Gen-Rec, I-V). The behavior of the solar cell like the short circuit current (JSC) may be derived from the I-V curve. The results can be saved for further editing or use in other programs as ASCII files (e.g., Excel). It is broadly used for the simulation and analysis of different types of solar cells [46–49].
1.7 Conclusion
From the study of these simulation softwares, it can be definitely said that simulation of perovskite solar cells can be used as a tool for designing and optimizing advanced perovskite solar cell structures and also to interpret the measurements made on different device structures. It can also be conclusively inferred that simulation can bring about better understanding of the detailed specifics of the working of perovskite solar cell structures. However, the simulation of perovskite solar cells requires a lot of input parameters, which makes it a tedious task.
All the softwares discussed here use Graphical User Interface except ASA, which uses ASCII file to input the values of various parameters. The number of layers that can be simulated is fixed in SCAPS and AMPS 1D, whereas there is no such fixation in AFORS-HET and ASA. All softwares studied use SRH recombination mechanism, whereas SCAPS and AMPS 1D also use band-to-band recombination. Auger recombination is considered in SCAPS. All the software studied here give the option to model defects. In SCAPS, up to seven defects can be simulated in any semiconductor layer, and all the parameters of each defect can be modified by “defect properties panel.” AMPS 1D allows Discrete and Banded Defect (Structural and Impurity) Levels and Generalized Defect (Structural and Impurity) Level Distributions. In AFORS-HET, defect distribution of states (DOS) has to be quantified for all layers and for the interfaces. In ASA, both the extended and localized states can be modeled using the defect-pool models. Modeling of tunnelling is available in all the softwares except AMPS 1D. All softwares are capable of doing electrical and spectral response measurements.
References
1. Neamen, D.A., Semiconductor physics and devices: basic principles, McGraw-Hill, New York, 2003.
2. Mandadapu, U., Vedanayakam, S.V., Thyagarajan, K., Babu, B.J., Optimisation of high efficiency tin halide perovskite solar cells using SCAPS-1D. Int. J. Simul. Process Model., 13, 3, 221–227, 2018.
3. Zeman, M., van den Heuvel, J., Pieters, B.E., Kroon, M., Willemen, J., Advanced semiconductor analysis, TU Delft, Delft, 2003.
4. Pieters, B.E., Krc, J., Zeman, M., May. Advanced numerical simulation tool for solar cells-ASA5, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2, IEEE, pp. 1513–1516, 2006.
5. Pieters, BE., Zeman, M., Metselaar, JW., Extraction of the defect density of states of a-Si:H using Q-DLTS. In s.n. (Ed.), Proceedings of the STW annual workshop on semiconductor advances for future electronics and sensors (SAFE 2005), 38–42, STW, 2005.
6. Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G., Metselaar, J.W., Computer modelling of current matching in a-Si: H/a-Si: H tandem solar cells on textured TCO substrates. Sol. Energy Mater. Sol. Cells, 46, 2, 81–99, 1997.
7. Meier, J., Dubail, S., Fluckinger, R., Fisher, D., Keppner, H., Shah, A., Intrinsic microcrystalline silicon(μc-Si:H)—A promising new thin film solar cell material. In Proceedings of the 1st World Conference on Photovoltaic energy conversion, Waikoloa, HI, USA, 5–9, December 1994.
8. Yamamoto, K., Yoshimi, M., Tawada, Y., Fukuda, S., Sawada, T., Meguro, T., Takata, H., Suezaki, T., Koi, Y., Hayashi, K., Suzuki, T., Large area thin film Si module. Sol. Energy Mater. Sol. Cells, 74, 1-4, 449–455, 2002.
9. Nádazdy, V., Durný, R., Pincik, E., Evidence for the improved defect-pool model for gap states in amorphous silicon from charge DLTS experiments on undoped a-Si: H. Phys. Rev. Lett., 78, 6, 1102, 1997.
10. Nádaždy, V. and Thurzo, I., A model of the small-signal charge DLTS response of traps distributed in both energy and space. Phys. Status Solidi (a), 127, 1, 167–177, 1991.
11. Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Reetz, W., Muller, J., 3-dimensional optical model for thin film silicon solar cells. 3rd World Conference on Photovoltaic Energy Conversion, Proceedings of, 2003, vol. 2, pp. 1827–1830, 2003.
12. Krč, J., Smole, F., Topič, M., Potential of light trapping in microcrystalline silicon solar cells with textured substrates. Prog. Photovolt: Res. Appl., 11, 429–436, 2003, https://doi.org/10.1002/pip.506.
13. Fonash, S., Arch, J., Cuiffi, J., Hou, J., Howland, W., McElheny, P., Moquin, A., Rogosky, M., Tran, T., Zhu, H., A manual for AMPS-1D for windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures, The Pennsylvania State University, USA, 1997.
14. Zhu, H., Kalkan, A.K., Hou, J., Fonash, S.J., Applications of AMPS-1D for solar cell simulation. AIP Conference Proceedings, vol. 462, pp. 309–314, 1999, https://doi.org/10.1063/1.57978.
15. Dennai Benmoussa, M. and Boukais, H.B., Simulation of hetero-junction (GaInP/GaAs) solar cell using AMPS-1D. J. Nano- Electron. Phys., 8, 1, 01009, 2016.
16. Hossain, E.S., Chelvanathan, P., Shahahmadi, S.A., Sopian, K., Bais, B., Amin, N., Performance assessment of Cu2SnS3 (CTS) based thin film solar cells by AMPS-1D. Curr. Appl. Phys., 18, 1, 79–89, 2018, https://doi.org/10.1016/j.cap.2017.10.009.
17. Stangl, R., Kriegel, M., Schmidt, M., AFORS-HET, Version 2.2, a numerical computer program for simulation of heterojunction solar cells and measurements, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2, IEEE, pp. 1350–1353, 2006, May.
18. Stangl, R., Kriegel, M., Maydell, K.V., Korte, L., Schmidt, M., Fuhs, W., AFORS-HET, an open-source on demand numerical PC program for simulation of (thin film) heterojunction solar cells, version 1.2, in: Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, IEEE, pp. 1556–1559, 2005, January2005.
19. Wurfel, P., The chemical potential of radiation. J. Phys. C: Solid State Phys., 15, 3967, 1982.
20. Fuhs, W., Korte, L., Schmidt, M., Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon. J. Optoelectron. Adv. Mat., 8, 6, 1989–1995, 2006.
21. Gudovskikh, A.S., Kleider, J.P., Stangl, R., New approach to capacitance spectroscopy for interface characterization of a-Si: H/c-Si heterojunctions. J. Non-Cryst. Solids, 352, 9-20, 1213–1216, 2006.
22. Gudovskikh, A.S., Kleider, J.P., Froitzheim, A., Fuhs, W., Terukov, E.I., Investigation of a-Si: H/c-Si heterojunction solar cells interface properties. Thin Solid Films, 451, 345–349, 2004.
23. Schaffarzik, D., Stangl, R., Laades, A., Schubert, C., Schmidt, M., Recombination analysis at the n-doped a-Si: H (n)/c-Si (p) heterojunction by means of time