Perovskite Materials for Energy and Environmental Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Perovskite Materials for Energy and Environmental Applications - Группа авторов страница 19
24. Maydell, K.V., Conrad, E., Schmidt, M., Efficient silicon heterojunction solar cells based on p- and n-type substrates processed at temperatures < 220 C. Prog. Photovolt: Res. Appl., 14, 289–295, 2006, https://doi.org/10.1002/pip.668.
25. Stangl, R., Kriegel, M., Schaffarzik, D., Schmidt, M., AFORS-HET, Version 2.1, a numerical computer program for simulation of (thin film) heterojunction solar cells, in: Proc. 15th Int. Photovoltaic Sci. Eng. Conf, pp. 985–986, 2005, October.
26. Stangl, R., Froitzheim, A., Kriegel, M., Brammer, T., Kirste, S., Elstner, L., ... Fuhs, W., AFORS-HET, a numerical PC-program for simulation of heterojunction solar cells, Version 1.1 (open-source on demand), to be distributed for public use. Proc. 19th PVSEC, Paris, France, 1497, 2004.
27. Burgelman, M., Nollet, P., Degrave, S., Modelling polycrystalline semiconductor solar cells. Thin solid films, 361, 527–532, 2000.
28. Decock, K., Khelifi, S., Burgelman, M., Modelling multivalent defects in thin film solar cells. Thin Solid Films, 519, 21, 7481–7484, 2011.
29. Burgelman, M. and Marlein, J., Analysis of graded band gap solar cells with SCAPS, in: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, pp. 2151–2155, 2008, September.
30. Verschraegen, J. and Burgelman, M., Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films, 515, 15, 6276–6279, 2007.
31. Degrave, S., Burgelman, M., Nollet, P., Modelling of polycrystalline thin film solar cells: new features in SCAPS version 2.3, in: 3rd World Conference on Photovoltaic Energy Conversion, Proceedings of 2003, vol. 1, IEEE, pp. 487– 490, 2003, May.
32. Niemegeers, A. and Burgelman, M., Numerical modelling of ac-characteristics of CdTe and CIS solar cells, in: Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, IEEE, pp. 901–904, 1996, May.
33. Press, W.H., Teukolsky, S.A., Flannery, B.P., Vetterling, W.T., Numerical recipes in Fortran 77: of Fortran numerical recipes: the art of scientific computing, vol. 1, Cambridge university press, Cambridge, 1992.
34. Verschraegen, J., Khelifi, S., Burgelman, M., Belghachi, A., Numerical modeling of the impurity photovoltaic effect (IPV) in SCAPS, in: 21st European Photovoltaic Solar Energy Conference, vol. 396, WIP, 2006, September.
35. Khelifi, S., Burgelman, M., Verschraegen, J., Belghachi, A., Impurity photovoltaic effect in GaAs solar cell with two deep impurity levels. Sol. Energy Mater. Sol. Cells, 92, 12, 1559–1565, 2008.
36. Khelifi, S., Verschraegen, J., Burgelman, M., Belghachi, A., Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renew. Energy, 33, 2, 293–298, 2008.
37. Decock, K., Zabierowski, P., Burgelman, M., Modeling metastabilities in chalcopyrite-based thin film solar cells. J. Appl. Phys., 111, 4, 043703, 2012.
38. Burgelman, M., Decock, K., Khelifi, S., Abass, A., Advanced electrical simulation of thin film solar cells. Thin Solid Films, 535, 296–301, 2013.
39. Niemegeers, A., Gillis, S., Burgelman, M., A user program for realistic simulation of polycrystalline heterojunction solar cells: SCAPS-1D. Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion, JRC, European Commission, juli, pp. 672–675, 1998.
40. Pauwels, H.J. and Vanhoutte, G., The influence of interface state and energy barriers on the efficiency of heterojunction solar cells. J. Phys. D: Appl. Phys., 11, 5, 649, 1978.
41. Verschraegen, J., Karakterisering en modellering met SCAPS van de CISCuT dunne-filmzonnecel, dissertation Universiteit Gent. Faculteit Ingenieurswetenschappen, 2006
42. Selberherr, S., Analysis and simulation of semiconductor devices, in: Springer Science & Business Media, 1984.
43. Marlein, J. and Burgelman, M., Empirical JV modelling of CIGS solar cells. In Proceedings of NUMOS (Int. Workshop on Numerical Modelling of Thin Film Solar Cells, Gent (B), 28-30 March 2007). 227-233, 227–233, 20072007. AU: Please provide journal title.
44. Walter, T., Herberholz, R., Müller, C., Schock, H.W., Determination of defect distributions from admittance measurements and application to Cu (In, Ga) Se2 based heterojunctions. J. Appl. Phys., 80, 8, 4411–4420, 1996.
45. Decock, K., Khelifi, S., Buecheler, S., Pianezzi, F., Tiwari, A.N., Burgelman, M., Defect distributions in thin film solar cells deduced from admittance measurements under different bias voltages. J. Appl. Phys., 110, 6, 063722, 2011.
46. Sharma, B., Mathur, A.S., Rajput, V.K., Singh, I.K., Singh, B.P., Device modeling of non-fullerene organic solar cell by incorporating CuSCN as a hole transport layer using SCAPS. Optik, 251, 168457, 2022.
47. Mathur, A.S., Upadhyay, S., Singh, P.P., Sharma, B., Arora, P., Rajput, V.K., Kumar, P., Singh, D., Singh, B.P., Role of defect density in absorber layer of ternary chalcogenide Cu2SnS3 solar cell. Optic. Mater., 119, 111314, 2021.
48. Mathur, A.S. and Singh, B.P., Study of effect of defects on CdS/CdTe heterojunction solar cell. Optik, 212, 164717, 2020.
49. Mathur, A.S., Dubey, S., Singh, B.P., Study of role of different defects on the performance of CZTSe solar cells using SCAPS. Optik, 206, 163245, 2020.
1 * Corresponding author: [email protected]
2
Fundamentals of Perovskite Solar Cells
Neha Patni*, Rokadia Zulfiqar and Krishna Patel
Chemical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
Abstract
Perovskite solar cell (PSC) is a type of third-generation hybrid solar cell based on organic-inorganic metal halide material, having the molecular formula of the type ABX3. High efficiency, flexibility, cell architecture, and low-cost production of the PSC have caught the attention of researchers and technologists in the field. There is a tremendous growth of efficiency in a short period, i.e., 3.8% in 2009 to nearly 25% in 2020. This chapter discusses the fundamental principle used in PSCs. Its structure, various layers of the cell, and their significance will be conferred. The chapter will also cover the working of the solar cell and discuss the various parameters on which the efficiency of the solar cell will depend. Fundamental properties of PSCs will be examined like high optical absorption, tunable bandgap, high open-circuit voltage, which is one of the most promising aspects of the perovskite technology that the cells can generate under full sun illumination with low loss‐ in‐potential. In the end, drawbacks of PSCs, like stability and toxicity, will be analyzed and its reasons will be examined in brief.
Keywords: Perovskite, solar cell, open-circuit voltage, power conversion efficiency
2.1 Introduction