Справочник Жаркова по проектированию и программированию искусственного интеллекта. Том 1: Программирование на Visual C# искусственного интеллекта. Валерий Алексеевич Жарков

Чтение книги онлайн.

Читать онлайн книгу Справочник Жаркова по проектированию и программированию искусственного интеллекта. Том 1: Программирование на Visual C# искусственного интеллекта - Валерий Алексеевич Жарков страница 7

Справочник Жаркова по проектированию и программированию искусственного интеллекта. Том 1: Программирование на Visual C# искусственного интеллекта - Валерий Алексеевич Жарков

Скачать книгу

2.7 видно, что и в первые два окна мы записываем десятичную дробь с запятой, и результат получаем в виде десятичной дроби с запятой. Следовательно, эти варианты кода на листинге 2.1 соответствуют российским (и международным) стандартам, когда десятичная дробь записывается с запятой. Поэтому в дальнейшем мы будем применять именно эти варианты кода.

      Аналогично выполняется суммирование различных чисел: целых и дробных, положительных и отрицательных. Таким образом, мы выполнили первый традиционный расчёт сложения двух чисел и теперь можем разрабатывать методики для решения более сложных задач при помощи языка программирования Visual C# (в последующих главах).

      2.6. Техническая характеристика калькулятора

      Исследуем возможности созданного нами калькулятора с целью применения его на практике. Попытаемся ввести в первое окно максимально большое число, состоящее, например, из двоек (цифр 2). Оказывается, в окно можно вводить большое количества цифр (сколько поместится в окне, каким бы большим мы его не делали), но учитываться в расчёте будет только ограниченное количество этих цифр. Для примера вводим двадцать двоек. Во второе окно также записываем цифры, например, двадцать троек (цифр 3). После щелчка кнопки “=” результат виден на рис. 2.8.

      Рис. 2.8. Результат сложения двух больших чисел.

      В числе с плавающей точкой (точнее, запятой), например, 5,555555555555557E+19 (рис. 2.8) цифры перед символом E называются мантиссой, а после E – порядком. Следовательно, в нашем калькуляторе максимальное количество разрядов мантиссы, дающих правильное значение числа, – пятнадцать (последняя пятнадцатая цифра 6 на рис. 2.8 округлена и определяет погрешность вычислений). Если после каждого щелчка кнопки “=” постепенно увеличивать количество цифр в первом или во втором окне, то увидим, что тридцать вторая (и далее) цифра уже не увеличивает порядок суммарного числа в третьем окне. Следовательно, в нашем калькуляторе максимальный порядок числа – тридцать один (31).

      Логичным завершением исследования возможностей нашего калькулятора явится его следующая краткая техническая характеристика.

      1. Система счисления вещественных чисел при вводе и выводе – десятичная.

      2. Максимальное количество разрядов мантиссы числа – пятнадцать (15).

      3. Максимальный порядок числа – тридцать один (31).

      4. Диапазон вычислений числа «x» по модулю |x|

      1*10E-031 <= |x| <= 9.99999999999999*10E+031.

      5. Форма представления запятой (точки):

      в диапазоне

      1 <= |x| <= 999999999999999

      – естественная;

      в диапазонах

1*10E-031 <= |x| <1и999999999999999 <|x| <= 9.99999999999999*10E+031

      – плавающая.

      Как видно из этой технической характеристики, созданный нами калькулятор в чем-то превосходит настольные калькуляторы и Windows-калькуляторы, а в чем-то уступает.

      Но главное достоинство состоит в том, что наш калькулятор является открытой вычислительной системой и, если в этом есть необходимость,

Скачать книгу