Математические модели в естественнонаучном образовании. Том I. Денис Владимирович Соломатин
Чтение книги онлайн.
Читать онлайн книгу Математические модели в естественнонаучном образовании. Том I - Денис Владимирович Соломатин страница 6
б.
,в.
,1.1.4. Повторите решение задачи 1.1.3(а) с помощью MATLAB, введя последовательность команд, например:
p=1
x=p
p=1.3*p
x=[x p]
p=1.3*p
x=[x p]
…
Возврат к предыдущим командам для их повторения можно осуществлять нажатием клавиши "↑". Объясните, как это работает. Теперь повторите решение с использованием цикла, например:
p=1
x=1
for i=1:10
p=1.3*p
x=[x p]
end
Отступ не является обязательным, но помогает сделать цикл for-end понятнее для чтения. Объясните, как это работает. Визуализируйте полученные данные на графике с помощью команды:
plot([0:10],x)
1.1.5. Для модели, указанной в задаче 1.1.3 а), сколько времени должно пройти, прежде чем популяция превысит 10, превысит 100 и превысит 1 000? Используйте MATLAB, чтобы вычислить это экспериментальным путём, а затем вычислите аналитически, используя логарифмирование и тот факт, что
. Обнаруживается ли закономерность в изменениях вычисленной продолжительности? Объясните, когда и почему значение стабилизируется.1.1.6. Если бы данные в таблице 1.2 о численности докторов физико-математических наук были собраны по десятилетиям с момента основания института математики, соответствовали бы они геометрической модели? Будет ли численность соответствовать геометрической модели хотя бы в некотором временном интервале? Объясните наблюдаемое явление.
Таблица 1.2. Численность учёных в стране (сотни)
0 1 2 3 4 5 6 7 8 9 10
1,94 3,04 4,62 6,72 9,26 11,88 14,08 15,52 16,26 16,60 16,72
1.1.7. Заполните пропуски:
а. Модели
и представляют растущие значения, когда – любое число в диапазоне _______, а – любое число в диапазоне _______.б. Модели
и представляют уменьшающиеся значения, когда – любое число в диапазоне _______, а – любое число в диапазоне _______.в. Модели
и представляют стабильные значения, когда – любое число в диапазоне _______ и когда – любое число в диапазоне _______.1.1.8. Объясните, почему модель
не может иметь смысла для описания численности популяции, когда .1.1.9. Предположим, что популяция описывается моделью
и . Найдите для .1.1.10. Говорят, что модель имеет устойчивое состояние или точку равновесия при
если всякий раз, когда