Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей. Алексей Семихатов

Чтение книги онлайн.

Читать онлайн книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов страница 4

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов

Скачать книгу

скорость движения по этим эллипсам. Она, оказывается, не постоянная. Кеплеру принадлежит ясная формулировка, из которой следует, в какой части эллипса планета движется быстрее и в точности во сколько раз быстрее, чем в какой-нибудь другой части. Закон так закон! – ему следуют все планеты, включая Землю. Чтобы его сформулировать, Кеплер снова приглашает нас посмотреть на орбиты со стороны и делает геометрические построения, проводя воображаемую линию от Солнца к планете и рассуждая о том, как эта линия поворачивается. Это довольно удивительно, если учесть, что никакой такой «линии» нет, но математические рассуждения с ее использованием позволяют сформулировать правило, описывающее реальные движения всех планет. Сравнивая положение планеты на орбите «сейчас» и, скажем, через день, Кеплер просит нас обратить внимание на площадь фигуры, образованной двумя радиусами и участком орбиты, который планета прошла за день. Второй закон Кеплера состоит в том, что площадь такого треугольника, заметаемого за выбранное время (скажем, день), – одна и та же вдоль всей орбиты. Там, где планета ближе к Солнцу, она движется как раз настолько быстрее, чтобы скомпенсировать меньшую высоту треугольника (расстояние от Солнца). Разница в скоростях вблизи Солнца и вдали от него велика для вытянутых эллипсов; для Земли же максимальная и минимальная скорости составляют 30,29 км/с и 29,29 км/с (соответствующие расстояния до Солнца при этом 147,09 млн и 152,10 млн километров). Земля ближе к Солнцу и движется быстрее, когда в Северном полушарии осень и зима, из-за чего этот прекрасный сезон формально оказывается укороченным на несколько дней. (Пять миллионов километров ближе или дальше от Солнца – далеко не первостепенный фактор, влияющий на климат.)

      3. Про то, как размеры эллипсов, по которым движутся разные планеты, соотносятся с временем их полного оборота вокруг Солнца. Не только каждая планета сама по себе следует законам, но и каждая пара планет подчиняется строгой и одной для всех математике. «Размером» эллипса в данном случае является его большая полуось – расстояние от центра (а не от Солнца!) до точки наибольшего удаления. Для любой пары планет Кеплер предлагает поделить друг на друга их большие полуоси, а результат возвести в квадрат. В качестве второго действия нужно поделить друг на друга продолжительности года на каждой планете, а результат этого деления возвести в куб. Получится, говорит Кеплер, одно и то же. Чем дальше планета от Солнца, тем больше времени занимает ее полный оборот – не только из-за того, что орбита длиннее, но еще и из-за того, что скорость планеты меньше (в 4 раза дальше – в 8 раз дольше; в 9 раз дальше – в 27 раз дольше).

      Кеплер начал с определения формы орбиты Земли, потом это сильно облегчило ему задачу найти форму всех других орбит. Но как же было подступиться к орбите тела, с которого были сделаны все наблюдения? Понадобилось третье, кроме Земли и Солнца, тело, а именно – Марс. Но, поскольку орбита Марса была равным образом неизвестна, Кеплер использовал его как источник некоторого набора отдельных точек («дискретной» информации). Ключ – момент, когда Солнце,

Скачать книгу