Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей. Алексей Семихатов

Чтение книги онлайн.

Читать онлайн книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов страница 6

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов

Скачать книгу

найти лучшее место, чтобы подтвердить его результаты, как не на Луне? Так что мы решили, что попробуем это вам сейчас показать. ‹…› Я отпущу оба предмета, и, будем надеяться, они достигнут поверхности одновременно.

      [Он разжимает перчатки – молоток и соколиное перо падают на лунную поверхность в согласии с ожиданиями.]

      Как вам такое?!

      Справедливости ради надо сказать, что Галилей развивал не идею притяжения, а тезис о естественности равноускоренного движения; тем не менее одинаковое ускорение для всех падающих тел в отсутствие сопротивления воздуха – его открытие.

      Как тебе такое, Галилео Галилей?

      Кроме того, Галилей смог усмотреть в свойствах движения то, что позднее стали называть инерцией (склонность движущихся тел сохранять свое состояние движения или в частном случае – покоя), хотя слова «инерция» сам Галилей не употребляет. Свойство каждого тела двигаться по инерции не вполне очевидно на первый взгляд, потому что мы воспринимаем разные свойства вещей одновременно: тела вокруг нас не сохраняют состояние своего движения из-за того, что на них действует сила трения или сила сопротивления среды. Не зная заранее всех действующих здесь факторов, не так легко выделить свойство инерции и объяснить, как оно проявляет себя, когда других факторов нет. Здесь снова в полной мере потребовалась способность Галилея логически доводить постановку эксперимента до некоторого предела – скажем, предела исчезновения трения, – добиться которого в реальности невозможно, но свойства которого тем не менее делались ясными исходя из шагов, приближающих реальную постановку к идеальной.

      Галилею же принадлежит мысль, что книга природы написана языком математики:

      Я распознал у Сарси твердое убеждение в том, будто при философствовании необычайно важно опираться на мнение какого-нибудь знаменитого автора ‹…› В действительности же, синьор Сарси, все обстоит не так. Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту[9].

      Вопрос о том, почему математика настолько эффективна в естественных науках, обсуждался многократно, и простого ответа на него нет, но рассуждения и примеры, приводимые различными авторами, читать интересно. Как бы то ни было, математика снабжает нас «движком» для того, чтобы делать выводы. Она особенно ценна в этом качестве, когда мы выходим за пределы области, где помощником может служить «здравый смысл». Это набор представлений, выработанных в рамках нашего ограниченного опыта, и они вполне могут отказывать (и отказывают!), когда этот

Скачать книгу


<p>9</p>

Пер. Ю. А. Данилова.