Isotopic Constraints on Earth System Processes. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Isotopic Constraints on Earth System Processes - Группа авторов страница 28

Isotopic Constraints on Earth System Processes - Группа авторов

Скачать книгу

furnace parts not also evaporate under oxidizing conditions. One will need to develop new experimental approaches in order to carry out evaporation experiments under a range of conditions that may have prevailed in the early solar nebula. A promising new approach for this involves the evaporation of molten beads in a laser heated aerodynamic levitation furnace. In such an apparatus a molten sample is floated on top of a stream of a prescribed gas composition and heated to high temperature by a laser. Winpenny et al. (2019) have shown that materials evaporated in such a furnace do become isotopically fractionated. The levitation experiments have their own limitation in that the gas flow cannot be varied at will because of the flow needed to levitate a sample of a given size. However they do provide quantitative information on evaporation into a flowing gas, which is the sort of evaporation that could take place in impact plumes. Fedkin et al. (2015) have argued that the chemical compositions of at least some types of chondrule are best explained as having once been molten droplets in impact plumes

      The present report limited itself to kinetic isotope effects in high‐temperature silicate systems. The interested reader will find a discussion of a large number of works reporting kinetic isotope fractionations in aqueous solutions in Watkins et al. (2017).

      1 Beck P., Chaussidon, M., Barrat, J. A., Gillet, Ph., & Bohn, M. (2006). Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites. Geochimica et Cosmochimica Acta, 70, 4813–4825. doi: 10.1016/j.gca.2006.07.025

      2 Bourg, I. C., Richter, F. M., Christensen, J. N., & Sposito, G. (2010). Isotopic mass‐dependence of metal cation diffusion coefficients in liquid water. Geochimica et Cosmochimica Acta, 74, 2249–2256. https://doi.org/10.1016/j.gca.2010.01.024

      3 Bowen, N. L. (1921). Diffusion in silicate melts. Journal of Geology, 29, 295–317. https://doi.org/10.1086/622784

      4 Chapman, S., & Dootson, M. A. (1917). A note on thermal diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33, 248–253. https://doi.org/10.1080/14786440308635635

      5 Chopra, R., Richter, F. M., & Watson, E. B. (2012). Isotope fractionation by chemical diffusion in natural settings and in their laboratory analogues. Geochimica et Cosmochimica Acta, 88, 1–18. https://doi.org/10.1016/j.gca.2012.03.039

      6 Clayton, R. N., Hinton, R. W., & Davis A. M. (1988). Isotopic variations in the rock‐forming elements in meteorites. Philosophical Transactions of the Royal Society of London A, 325, 483–501. https://doi.org/10.1098/rsta.1988.0062

      7 Cooper, A. R. (1968). The use and limitations of the concept of an effective binary diffusion coefficient for multicomponent diffusion. In: J. B. Wachtman and A. D. Franklin (eds.), Mass Transport in Oxides, NBS Special Publication 296, 79–84.

      8 Davis, A. M., Hashimoto, A., Clayton, R. N., & Mayeda, T. K. (1990). Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655–658. https://doi.org/10.1038/347655a0

      9 de Groot, S. R., & Mazur, P. (1962). Non‐Equilibrium Thermodynamics. Dover.

      10 Dohmen, R., Kasemann, S. A., Coogan, L. A., & Chakraborty, S. (2010). Diffusion of Li in olivine. Part 1: Experimental observations and a multiple species diffusion model. Geochimica et Cosmochimica Acta, 74, 274–292. https://doi.org/10.1016/j.gca.2009.10.016

      11 Enskog, D. (1917). Kinetische Theorie der Vorgaenge in maessig verduennten Gasen. I. Allgemeiner Teil, Uppsala.

      12 Fedkin, A. V., Grossman, L., Humayun, M., Simon, S. B., & Campbell, A. J. (2015). Condensates from vapor made by impacts between metal‐, silicate‐rich bodies: Comparison with metal and chondrules in CB chondrites. Geochimica et Cosmochimica Acta, 164, 236–261. https://doi.org/10.1016/j.gca.2015.05.022

      13 Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., Alard, O., et al. (2003). Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium‐isotope ratio measurements. Journal of Analytical Atomic Spectrometry, 18, 1352–1356. https://doi.org/10.1039/B309273A

      14 Goel, G., Zhang, L., Lacks, D. J., & Van Orman, J. A. (2012). Isotope fractionation by diffusion in silicate melts: Insights from molecular dynamics simulations. Geochimica et Cosmochimica Acta, 93, 205–213. https://doi.org/10.1016/j.gca.2012.07.008

      15 Grossman, L., Ebel, D. S., Simon, S. B., Davis, A. M., Richter, F. M., & Parsad, N. M. (2000). Major element chemical and isotopic composition of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochimica et Cosmochimica Acta, 64, 2879–2894. https://doi.org/10.1016/S0016‐7037(00)00396‐3

      16 Guo, C., & Zhang, Y. (2018). Multicomponent diffusion in basaltic melts at 1350°C. Geochimica et Cosmochimica Acta, 228, 190–204. https://doi.org/10.1016/j.gca.2018.02.043

      17 Hashimoto, A. (1999). Chemical and isotopic fractionations in the primordial nebula. Planet. People, 4, 266–282.

      18 Holycross, M. E., Watson, E. B., Richter, F. M., & Villeneuve, J. (2018). Diffusive fractionation of Li isotopes in wet, highly silicic melts. Geochemical Perspectives Letters, 6, 39–42. doi: 10.7185/geochemlet.1807

      19 Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K., & Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71, 202–218. https://doi.org/10.1016/j.gca.2006.06.1611

      20 Knight, K. B., Kita, N. T., Mendybaev, R. A., Richter, F. M., Davis, A. M., & Valley, J. W. (2009). Si isotope fractionation of CAI‐like vacuum evaporation residues. Geochimica et Cosmochimica Acta, 73, 6390–6401. https://doi.org/10.1016/j.gca.2009.07.008

      21 Kyser, T. K., Lesher, C. E., & Walker, D. (1998). The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contributions to Mineralogy and Petrology, 133, 373–381. https://doi.org/10.1007/s004100050459

      22 Lesher, C. E., & Walker, D. (1986). Solution properties of silicate liquids from thermal diffusion experiments. Geochimica et Cosmochimica Acta, 50, 1397–1411. https://doi.org/10.1016/0016‐7037(86)90313‐3

      23 Liang, Y., Richter, F. M., Davis, A.M., & Watson, E. B. (1996a). Diffusion in silicate melts: I. Self‐diffusion in CaO‐A2O3‐Si02 at 1500°C and 1 GPa. Geochimica et Cosmochimica Acta, 60, 4353–4367. https://doi.org/10.1016/S0016‐7037(96)00288‐8

      24 Liang,

Скачать книгу