Isotopic Constraints on Earth System Processes. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Isotopic Constraints on Earth System Processes - Группа авторов страница 29
25 Liang, Y., Richter, F. M., & Chamberlin, L. (1997). Diffusion in silicate melts: III. Empirical models for multicomponent diffusion. Geochimica et Cosmochimica Acta, 61, 5295–5312. https://doi.org/10.1016/S0016‐7037(97)00301‐3
26 Oeser, M., Dohmen, R., Horn, I., Schuth, S., & Weyer, S. (2015). Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochimica et Cosmochimica Acta, 154, 130–150. https://doi.org/10.1016/j.gca.2015.01.025
27 Onsager, L. (1945). Theories and problems of liquid diffusion. Annals of the New York Academy of Science, 46, 241–265. 10.1111/j.1749‐6632.1945.tb36170.x
28 Parkinson, I. J., Hammond, S. J., James, R. H., & Rogers, N. W. (2007). High‐temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, 257, 609–621. https://doi.org/10.1016/j.epsl.2007.03.023
29 Richter, F. M., Chaussidon, M., Mendybaev, R., & Kite, E. (2016). Reassessing the cooling rate and geologic setting of Martian meteorites MIL 03346 and NWA 817. Geochimica et Cosmochimica Acta, 182, 1–23. https://doi.org/10.1016/j.gca.2016.02.020
30 Richter, F. M., Chaussidon, M., Watson, E. B., Mendybaev, R., & Homolova, V. (2017). Lithium isotopic fractionation in minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219, 124–142. https://doi.org/10.1016/j.gca.2017.09.001
31 Richter, F. M., Dauphas, N., & Teng, F.‐Z. (2009a). Non‐traditional fractionation of non‐traditional isotopes by chemical and Soret diffusion. Chemical Geology, 258, 92–103. https://doi.org/10.1016/j.chemgeo.2008.06.011
32 Richter, F. M., Davis, A. M., Ebel, D. S., & Hashimoto, A. (2002). Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal history. Geochimica et Cosmochimica Acta, 66, 521–540. https://doi.org/10.1016/S0016‐7037(01)00782‐7
33 Richter, F. M., Davis, A. M., DePaolo, D. L., & Watson, E. B. (2003). Isotope fractionation between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67, 3905–3923. https://doi.org/10.1016/S0016‐7037(03)00174‐1
34 Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M., & Wadhwa, M. (2007). Elemental and isotopic fractionation of Type B CAI‐like liquids by evaporation. Geochimica et Cosmochimica Acta, 71, 5544–5564. https://doi.org/10.1016/j.gca.2007.09.005
35 Richter, F. M., Liang, Y., & Davis, A. M. (1999). Isotope fractionation by diffusion in molten oxides. Geochimica et Cosmochimica Acta, 63, 2853–2861. https://doi.org/10.1016/S0016‐7037(99)00164‐7
36 Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio, N. C., & Beloso Jr., A. D. (2006b). Kinetic isotope fractionation during diffusion of ionic species in water. Geochimica et Cosmochimica Acta, 70, 277–289. https://doi.org/10.1016/j.gca.2005.09.016
37 Richter, F. M., Mendybaev, R. A., & Davis, A. M. (2006a). Conditions in the protoplanetary disk as seen by refractory inclusions in meteorites. Meteoritics and Planetary Science, 41, 83–93. doi: 10.1111/J.1945‐5100.2006.TB00194.X
38 Richter, F. M., Watson, E. B., Mendybaev, R., Dauphas, N., Georg, B., Watkins, J., & Valley, J. (2009b). Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73, 4250–4263. https://doi.org/10.1016/j.gca.2009.04.011
39 Richter, F. M., Watson, E. B., Chaussidon, M., Mendybaev, R. A., Christensen, J. N., & Qiu, L. (2014a). Isotope fractionation of Li and K in silicate liquids by Soret diffusion. Geochimica et Cosmochimica Acta, 138, 136–145. https://doi.org/10.1016/j.gca.2014.04.012
40 Richter, F. M., Watson, B., Chaussidon, M., Mendybaev, R., & Ruscitto, D. (2014b). Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126, 352–370. https://doi.org/10.1016/j.gca.2013.11.008
41 Richter, F. M., Watson, E. B., Mendybaev, R. A., Teng, F‐Z., & Janney, P. E. (2008). Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 72, 206–220. https://doi.org/10.1016/j.gca.2007.10.016
42 Sio, C. K., Dauphas, N., Teng, F.‐Z., Chaussidon, M., Helz, R. T., & Roskosz, M. (2013). Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochimica et Cosmochimica Acta, 123, 302–321. https://doi.org/10.1016/j.gca.2013.06.008
43 Sio, C. K., Roskosz, M., Dauphas, N., Neil, R., Bennett, N. R., Mock, T., & Shahar, A. (2018). The isotope effect for Mg‐Fe interdiffusion in olivine and 1 its dependence on crystal orientation, composition and temperature. Geochimica et Cosmochimica Acta, 239, 463–480. https://doi.org/10.1016/j.gca.2018.06.024
44 Soret, C. (1879). Sur l’etat d’equilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohene dont deux parties sont portees a des temperatures differentes. Archives des Sciences Physiques et Naturelles, 2, 48.
45 Stolper, E. M. (1982). Crystallization sequences of Ca–Al‐rich inclusions from Allende: An experimental study. Geochimica et Cosmochimica Acta, 46, 2159–2180. https://doi.org/10.1016/0016‐7037(82)90192‐2
46 Stolper, E., & Paque, J. M. (1986). Crystallization sequences of calcium‐aluminum–rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochimica et Cosmochimica Acta, 50, 1785–1806. https://doi.org/10.1016/0016‐7037(86)90139‐0
47 Teng, F‐Z., McDonough, W. F., Rudnick, R. L., & Walker, R. J. (2006). Diffusion‐driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243, 701–710. https://doi.org/10.1016/j.epsl.2006.01.036
48 Thomas, J. B., & Watson, E. B. (2014). Diffusion and partitioning of magnesium in quartz grain boundaries. Contributions to Mineralogy and Petrology, 168, 1–12. https://doi.org/10.1007/s00410‐014‐1068‐5