Закат Западного мира. Очерки морфологии мировой истории. Освальд Шпенглер
Чтение книги онлайн.
Читать онлайн книгу Закат Западного мира. Очерки морфологии мировой истории - Освальд Шпенглер страница 40
У Диофанта число больше не есть мера и сущность скульптурных вещей. На мозаиках Равенны человек более не тело. Греческие обозначения незаметно утратили свое первоначальное содержание. Мы покидаем область аттической καλοκἀγαθία [физического и нравственного совершенства (греч.)], стоических ἀθαραξία и γαλήνη [невозмутимости и безмятежности (греч.)]. Правда, Диофанту еще неизвестны нуль и отрицательные числа, однако скульптурные единицы пифагорейских чисел ему уже неизвестны. С другой стороны, неопределенность неименованных арабских чисел представляет собой все же нечто совершенно иное, нежели закономерная изменчивость позднего западного числа, функции.
Магическая математика вполне последовательно и мощно развивалась (хотя подробности этого нам неизвестны) и после Диофанта (который уже сам предполагает определенное развитие) вплоть до своего завершения в эпоху Аббасидов в IX в., как это доказывается уровнем знаний у Аль-Хорезми и Аль-Зиджи. Что означает рядом с евклидовой геометрией аттическая скульптура (тот же самый язык форм в ином обличье), что означает рядом с пространственным анализом полифонический стиль в инструментальной музыке, то же самое означает рядом с этой алгеброй магическое искусство мозаики, все с большим богатством развивавшиеся в империи Сасанидов, а позже в Византии арабески с их чувственно-бесплотным улетучиванием (Verschweben) органических формальных мотивов и горельефы константиновского стиля с неопределенной глубокой темнотой фона, оставленного между свободно изваянными фигурами. Как алгебра соотносится с античной арифметикой и западным анализом, так и купольная церковь соотносится с дорическим храмом и готическим собором.
Не то чтобы Диофант был великим математиком. То, из-за чего чаще всего вспоминают его имя, содержится не в его трактатах, а то, что в них содержится, вне всякого сомнения, не является всецело его собственностью. Его обязанное случаю значение заключается в том, что – насколько нам известно – у него первого с совершенной несомненностью заявило о себе новое ощущение числа. Сравнивая его с мастерами, завершавшими математику, такими как Аполлоний и Архимед в античной математике и соответствующие им Гаусс, Коши и Риман – в математике западной, мы находим у Диофанта, прежде всего в его формульном языке, нечто примитивное, что до сих пор охотно приписывалось позднеантичному упадку. Впоследствии мы это поймем и научимся ценить – по образцу той переоценки до сих пор прямо-таки презиравшегося якобы позднеантичного искусства в продвигающееся пока на ощупь самовыражение только еще пробуждающегося раннеарабского мироощущения. Такое же архаическое, примитивное и гадательное впечатление производит и математика Николая Оресма, епископа Лизье (1323–1382), впервые на Западе введшего свободную разновидность координат и даже степени с дробными показателями,