Закат Западного мира. Очерки морфологии мировой истории. Освальд Шпенглер

Чтение книги онлайн.

Читать онлайн книгу Закат Западного мира. Очерки морфологии мировой истории - Освальд Шпенглер страница 42

Закат Западного мира. Очерки морфологии мировой истории - Освальд Шпенглер Non-Fiction. Большие книги

Скачать книгу

Не было доныне второй такой культуры, которая окружала бы таким благоговением достижения другой, находилась бы под таким сильным ее влиянием в научном смысле, как это происходит с западной культурой по отношению к культуре античной. Много, очень много времени прошло, пока мы собрались с духом и стали пользоваться собственным мышлением. В основании этого лежало неизменное желание ни в чем не уступить античности. Тем не менее каждый шаг, делавшийся с этой целью, был на самом деле удалением от идеала, к которому стремились. Поэтому история западноевропейской науки представляет собой последовательное освобождение от античного мышления, – освобождение, которого никто вовсе и не желал, которое было навязано нам в глубинах бессознательного. Таким образом, развитие новой математики вылилось в негласную, долгую, увенчавшуюся в конце концов победой борьбу против понятия величины[55].

10

      Ориентированные на античность предубеждения мешали нам по-новому обозначить собственно западное число как таковое. Язык символов современной математики замазывает этот факт, и прежде всего на его счет следует отнести то, что еще и сегодня также и среди математиков господствует убеждение в том, что числа – величины, ибо на этой предпосылке, разумеется, и основывается наш способ письменных обозначений.

      Однако новым числом являются не служащие для выражения функции отдельные символы (х, π, 5), а сама функция как единство, как элемент, как переменное отношение, более не вмещающееся в оптические границы. Для него понадобился бы новый, не находившийся под влиянием античных воззрений формульный язык.

      Необходимо давать себе ясный отчет, чем отличаются друг от друга два таких уравнения (уже само одно это слово не должно было бы одновременно обозначать столь разноплановые вещи), как 3x + 4x = 5x и хn + уn = zn (уравнение теоремы Ферма). Первое образовано несколькими «античными числами» (величинами), второе представляет собой число другого рода, что оказывается сокрытым тождественным способом записи, который развился под впечатлением евклидовско-архимедовских представлений. В первом случае знак равенства является констатацией жесткой связи определенных, доступных чувствам величин; во втором – он устанавливает существующую внутри группы переменных образований связь такого рода, что определенные изменения необходимо влекут за собой другие. Цель первого уравнения – определение (измерение) конкретной величины, «результата»; у второго вообще нет никакого результата, а является оно лишь отображением и знаком отношения, которое исключает целочисленные значения для п > 2 (это и есть знаменитая проблема Ферма), что, возможно, удастся доказать. Греческий математик вообще бы не взял в толк, какова собственно цель операций такого рода, вообще не направленных на «вычисление» как таковое.

      Понятие неизвестного всецело сбивает с толку, если применить его

Скачать книгу


<p>55</p>

То же самое может быть сказано и о римском праве, ср. с. 583 слл., и о монете, ср. с. 1034 сл.