Глоссариум по искусственному интеллекту: 2500 терминов. Том 2. Александр Юрьевич Чесалов

Чтение книги онлайн.

Читать онлайн книгу Глоссариум по искусственному интеллекту: 2500 терминов. Том 2 - Александр Юрьевич Чесалов страница 14

Глоссариум по искусственному интеллекту: 2500 терминов. Том 2 - Александр Юрьевич Чесалов

Скачать книгу

bytes that are prescribed in the encoding scheme as corresponding to the characters in the scheme (e.g., alphabetic and numeric characters, punctuation marks, and spaces)203.

      Сhatbot is a software application designed to simulate human conversation with users via text or speech. Also referred to as virtual agents, interactive agents, digital assistants, or conversational AI, chatbots are often integrated into applications, websites, or messaging platforms to provide support to users without the use of live human agents. Chatbots originally started out by offering users simple menus of choices, and then evolved to react to particular keywords. «But humans are very inventive in their use of language,» says Forrester’s McKeon-White. Someone looking for a password reset might say they’ve forgotten their access code, or are having problems getting into their account. «There are a lot of different ways to say the same thing,» he says. This is where AI comes in. Natural language processing is a subset of machine learning that enables a system to understand the meaning of written or even spoken language, even where there is a lot of variation in the phrasing. To succeed, a chatbot that relies on AI or machine learning needs first to be trained using a data set. In general, the bigger the training data set, and the narrower the domain, the more accurate and helpful a chatbot will be204.

      Checkpoint — data that captures the state of the variables of a model at a particular time. Checkpoints enable exporting model weights, as well as performing training across multiple sessions. Checkpoints also enable training to continue past errors (for example, job preemption). Note that the graph itself is not included in a checkpoint205.

      Chip is an electronic microcircuit of arbitrary complexity, made on a semiconductor substrate and placed in a non-separable case or without it, if included in the micro assembly206,207.

      Class — one of a set of enumerated target values for a label. For example, in a binary classification model that detects spam, the two classes are spam and not spam. In a multi-class classification model that identifies dog breeds, the classes would be poodle, beagle, pug, and so on208.

      Classification model is a type of machine learning model for distinguishing among two or more discrete classes. For example, a natural language processing classification model could determine whether an input sentence was in French, Spanish, or Italian209.

      Classification threshold is a scalar-value criterion that is applied to a model’s predicted score in order to separate the positive class from the negative class. Used when mapping logistic regression results to binary classification210.

      Classification. Classification problems use an algorithm to accurately assign test data into specific categories, such as separating apples from oranges. Or, in the real world, supervised learning algorithms can be used to classify spam in a separate folder from your inbox. Linear classifiers, support vector machines, decision trees and random forest are all common types of classification algorithms211.

      Сloud robotics is a field of robotics that attempts to invoke cloud technologies such as cloud computing, cloud storage, and other Internet technologies centred on the benefits of converged infrastructure and shared services for robotics. When connected to the cloud, robots can benefit from the powerful computation, storage, and communication resources of modern data center in the cloud, which can process and share information from various robots or agent (other machines, smart objects, humans, etc.). Humans can also delegate tasks to robots remotely through networks. Cloud computing technologies enable robot systems to be endowed with powerful capability whilst reducing costs through cloud technologies. Thus, it is possible to build lightweight, low cost, smarter robots have intelligent «brain» in the cloud. The «brain» consists of data center, knowledge base, task planners, deep learning, information processing, environment models, communication support, etc.212.

      Clinical Decision Support (CDS) is a health information technology system that is designed to provide physicians and other health professionals with clinical decision support, that is, assistance with clinical decision- making tasks213.

      Clipping is a technique for handling outliers. Specifically, reducing feature values that are greater than a set maximum value down to that maximum value. Also, increasing feature values that are less than a specific minimum value up to that minimum value. For example, suppose that only a few feature values fall outside the range 40—60. In this case, you could do the following: Clip all values over 60 to be exactly 60. Clip all values under 40 to be exactly 40. In addition to bringing input values within a designated range, clipping can also used to force gradient values within a designated range during training214.

      Closed dictionary in speech recognition systems, a dictionary with a limited number of words, to which the recognition system is configured and which cannot be replenished by the user215.

      Cloud computing is an information technology model for providing ubiquitous and convenient access using the Internet to a common set of configurable computing resources («cloud»), data storage devices, applications and services that can be quickly provided and released from the load with minimal operating costs or with little or no involvement of the provider216.

      Cloud is a general metaphor that is used to refer to the Internet. Initially, the Internet was seen as a distributed network and then with the invention of the World Wide Web as a tangle of interlinked media. As the Internet continued to grow in both size and the range of activities it encompassed, it came to be known as «the cloud.» The use of the word cloud may be an attempt to capture both the size and nebulous nature of the Internet217.

      Cloud TPU is a specialized hardware accelerator designed to speed up machine learning workloads on Google Cloud Platform218.

      Cluster analysis is a type of unsupervised learning used for exploratory data analysis to find hidden patterns or groupings in the data; clusters are modeled with a similarity measure defined by metrics such as Euclidean or probability distance.

      Clustering is a data mining technique for grouping unlabeled data based on their similarities or differences. For example, K-means clustering algorithms assign similar data points into groups, where the K value represents the size of the grouping and granularity. This technique is helpful for market segmentation, image compression, etc219.

      Co-adaptation is when neurons predict patterns in training data by relying almost exclusively on outputs of specific other neurons instead of relying on the network’s behavior as a whole. When the

Скачать книгу


<p>203</p>

Character format [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#C

<p>204</p>

Сhatbot [Электронный ресурс] www.cio.com URL: https://www.cio.com/article/189347/what-is-a-chatbot-simulating-human-conversation-for-service.html (дата обращения: 07.07.2022)

<p>205</p>

Checkpoint [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/checkpoint (дата обращения: 04.05.2023)

<p>206</p>

Chip [Электронный ресурс] https://www.litres.ru URL: https://www.litres.ru/book/alexander-chesalov/the-fourth-industrial-revolution-glossarium-over-1500-o-69111079/chitat-onlayn/page-4/?lfrom=203296966&ffile=1 (дата обращения: 10.07.2023)

<p>207</p>

Интегра́льная схе́ма (Чип) [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Интегральная_схема (дата обращения: 10.07.2023)

<p>208</p>

Class [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/class (дата обращения: 02.05.2023)

<p>209</p>

Classification model [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/classification-model (дата обращения: 10.05.2023)

<p>210</p>

Порог классификации [Электронный ресурс] https://www.ibm.com URL: https://www.ibm.com/docs/ru/spss-statistics/saas?topic=regression-logistic-options (дата обращения: 26.06.2023)

<p>211</p>

Classification [Электронный ресурс] https://www.ibm.com URL: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning (дата обращения: 03.05.2023)

<p>212</p>

Сloud robotics [Электронный ресурс] https://digitrode.ru URL: http://digitrode.ru/articles/2683-chto-takoe-oblachnaya-robototehnika.html (дата обращения: 09.02.2022)

<p>213</p>

Clinical Decision Support (CDS) [Электронный ресурс] www.quora.com URL: https://www.quora.com/What-are-clinical-decision-support-systems-What-benefits-do-they-provide (дата обращения 28.02.2022)

<p>214</p>

Clipping [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/clipping (дата обращения: 20.06.2023)

<p>215</p>

Закрытый словарь [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b/ (дата обращения: 07.07.2022)

<p>216</p>

Облачные вычисления [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Облачные_вычисления (дата обращения: 02.05.2023)

<p>217</p>

Cloud [Электронный ресурс] https://dropbox.com URL: https://www.dropbox.com/ru/business/resources/what-is-the-cloud (дата обращения: 09.02.2022)

<p>218</p>

Cloud TPU [Электронный ресурс] https://github.com URL: https://github.com/tensorflow/tpu (дата обращения: 25.02.2022)

<p>219</p>

Clustering [Электронный ресурс] https://medium.com URL: https://medium.com/@venkatesh.t.16072001/difference-between-supervised-and-unsupervised-learning-algorithm-8bda6352489f (дата обращения: 03.05.2023)