Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно. Бен Орлин
Чтение книги онлайн.
Читать онлайн книгу Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - Бен Орлин страница 8
3. В конце концов все возможности будут исчерпаны. Выигрывает тот, кто сделает последний ход.
Прелесть «Ростков» в гибкости линий. Неважно, какие они: прямые, плавные кривые или витиеватые спирали; значение имеют только соединяемые точки. Можете даже изобразить свою подпись. Шестиклассница Анджела так и поступила, когда мы попробовали сыграть, и, хотя в принципе она нарушила правило (линии самопересекались), это настолько впечатляло, что я не возражал.
Такая гибкость отражает суть топологии: вещи могут быть совершенно непохожими друг на друга, но иметь одинаковый функционал.
Рассмотрим вариант, где вначале на игровом поле всего одна точка. Первый игрок волей-неволей рисует петлю и ставит новую точку на ней. Второй игрок должен соединить две точки. Кажется, возможны два варианта: нарисовать линию внутри петли или снаружи.
Но погодите-ка. Представьте, что вы чертите линии на сфере. Особо ничего не меняется, но теперь неважно, рисуете ли вы вторую линию «внутри» или «снаружи». С точки зрения топологии эти два хода идентичны. Таким образом, в действительности у второго игрока нет выбора.
А как насчет игры, которая начинается с двух точек? У первого игрока есть лишь два варианта: соединить эти две точки или нарисовать петлю. Неважно, будет ли вторая точка «внутри» или «снаружи» петли. Топологически нет разницы.
Неужели топологи не замечают различий и все вещи для них на одно лицо? «Победа» топологически равноценна «поражению»? «Хорошо» топологически то же самое, что «плохо»? Кошка топологически эквивалентна рыбке и в аквариум нужно поставить маленький кошачий лоток?
Решайте сами, если у вас есть домашние питомцы. Но, играя в «Ростки», не стоит беспокоиться. Не все ходы эквивалентны. По сути дела, когда все начинается с двух точек, уже ко второму ходу возникает шесть топологически разных вариантов. Свободы становится все больше.
В «Точках-клеточках» мы имели дело с жесткой, прямолинейной геометрией, подобной градостроительному плану. «Ростки», напротив, свободолюбивая игра, похожая на хаос карнавального шествия.
Место и время рождения «Ростков» точно известны: Великобритания, Кембридж, вторая половина дня во вторник 21 февраля 1967 года.
Родители игры, кибернетик Майк Патерсон и математик Джон Конвей, рисовали закорючки на листе бумаги, пытаясь изобрести новую игру. Майк предложил правило с добавлением новой точки, Джон предложил название. Так родились «Ростки»[11]. Они поделили честь открытия в соотношении 60/40 в пользу Майка: эта честная и точная пропорция впечатляет не меньше, чем само рождение игры.
В «Ростки»
11
Почему-то трезвомыслящие люди, размышляя над альтернативным названием, превращаются в психов. Один аспирант, заметив, что точек становится всё больше, предложил назвать игру «Корь». Позже проницательный в целом Эрик Соломон написал, что игру назвали «Ростки», потому что в финале рисунок напоминает «разваренную брюссельскую капусту». Во-первых, логика названия другая; во-вторых, лучше бы Эрика не допускали к приготовлению брюссельской капусты.