Метафизика опыта. Книга II. Позитивная наука. Шедворт Ходжсон

Чтение книги онлайн.

Читать онлайн книгу Метафизика опыта. Книга II. Позитивная наука - Шедворт Ходжсон страница 34

Метафизика опыта. Книга II. Позитивная наука - Шедворт Ходжсон

Скачать книгу

функций, а варифметика – вычисление величин» (ibid. p. 134). Но, ни на минуту не отрицая универсальности чистой арифметики, которая является одновременно основой и конечной целью всех вычислений, я все же не могу не думать, что различие метода (a queesitis tanquam datis ad datas tanquam queesitas quantitates), отмеченное Ньютоном как характерное для алгебры, дает более ясное представление о положении, которое эти две области соответственно занимают по отношению к процессам обычного логического мышления. Различие Ньютона особенно ценно тем, что оно демонстрирует методы арифметики и алгебры _ в этой связи, то есть в свете их общего отношения к мышлению в целом. То, что это различие реально, что обратный метод алгебры действительно является обобщением, а также инверсией метода арифметики, надеюсь, станет очевидным по мере нашего дальнейшего изложения. —

      12

      Work cited, p. 3.

      13

      Todhunter’s Algebra, 5th ed., 1870, Art. 94, p. 41,

      14

      Encyc. Brit. Ninth Edition, 1875. Vol I. p. 519.

      15

      Chambers’ Encyclopaedia. Edition of 1888. Vol. I., p. 248.

      16

      Chambers’s Encyclopaedia, Art: Calculus, Vol. II., p. 636, New Edition, 1888.

      17

      См. доклад покойного Эдварда Хоксли Родса «Научная концепция измерения времени», прочитанный в Аристотелевском обществе 1 июня 1885 г. и опубликованный в журнале «Mind», том X., стр. 347, первая серия. Возможно, мне следует также упомянуть о моей работе «Измерение времени в его отношении к философии», опубликованной в «Трудах Аристотелевского общества», том II, Я пользуюсь этой возможностью, чтобы с благодарностью отметить помощь, которую я получил от бесед с моим другом мистером Э. Хоксли Родсом в последние годы его жизни, а также от переписки с моим другом (и постоянным учителем математики во время его пребывания в Англии), мистером Эдуардом Мерлье, по теме настоящего раздела. Я ни в коей мере не хочу возлагать на них ответственность за ошибки, вызванные моим собственным несовершенным пониманием математической науки, и тем более за ход моих метафизических спекуляций относительно нее.

      18

      Для более полного обсуждения этого вопроса я бы отослал вас к моей «Философии размышления», глава VIII. (Vol. II., pp. 67—121), а также к моему Аристотелевскому обращению за ноябрь 1893 г., «Концепция бесконечности», опубликованному в. Proceedings of the Aristotelian Society, Vol. II., No. 3, 1894, хотя в последнем есть некоторые утверждения, которых я теперь, пожалуй, не склонен придерживаться.

      19

      Эти восемь областей – восемь пирамид, каждая из которых состоит из трех сторон и основания (основание находится в бесконечности) и имеет общую вершину. Чтобы представить себе это в воображении, возьмите, скажем, апельсин и разделите его на две половины по горизонтали, причем горизонтальное деление обозначает первую из трех плоскостей, о которых говорилось выше. Затем разделите его на две половины по вертикали, сделав разрез под прямым углом к направлениям Q’iyht и left; и снова на две половины, сделав разрез под прямым углом к направлениям forward и backwards. Если взять верхнюю половину апельсина, образованную первым или горизонтальным разрезом, то очевидно, что теперь она состоит из четырех цельных четвертей или квадрантов, отделенных друг от друга двумя вертикальными разрезами, о которых уже говори�

Скачать книгу