Промпт-инжиниринг. Язык будущего. Александр Александрович Костин
Чтение книги онлайн.
Читать онлайн книгу Промпт-инжиниринг. Язык будущего - Александр Александрович Костин страница 14
Глава 2. Основы работы с ИИ-системами
2.1. Как ИИ воспринимает и обрабатывает информацию
Искусственный интеллект (ИИ) произвел революцию в области обработки информации, предлагая новые способы анализа, интерпретации и генерации данных. Чтобы эффективно работать с ИИ-системами, крайне важно понимать, как они воспринимают и обрабатывают информацию. В этом разделе мы рассмотрим ключевые принципы, лежащие в основе работы современных ИИ-систем.
Принципы машинного обучения и нейронных сетей
Машинное обучение (МО) является фундаментальной технологией, лежащей в основе большинства современных ИИ-систем. В отличие от традиционного программирования, где программисты явно задают правила для обработки данных, системы машинного обучения «учатся» на основе предоставленных им данных.
Основные парадигмы машинного обучения включают:
1. Обучение с учителем (Supervised Learning): Система обучается на размеченных данных, где для каждого входного примера известен правильный выход. Цель – научиться предсказывать правильный выход для новых, ранее не виденных входных данных.
2. Обучение без учителя (Unsupervised Learning): Система работает с неразмеченными данными, пытаясь найти в них скрытые структуры или закономерности.
3. Обучение с подкреплением (Reinforcement Learning): Система учится через взаимодействие с окружающей средой, получая награды или штрафы за свои действия.
Нейронные сети, вдохновленные структурой человеческого мозга, являются одним из наиболее мощных инструментов машинного обучения. Они состоят из interconnected «нейронов», организованных в слои. Каждый нейрон получает входные сигналы, обрабатывает их и передает результат дальше.
Глубокое обучение (Deep Learning) – это подмножество машинного обучения, использующее нейронные сети с множеством скрытых слоев. Именно глубокие нейронные сети лежат в основе многих современных достижений в области ИИ, включая обработку естественного языка, компьютерное зрение и генерацию контента.
Ключевые принципы работы нейронных сетей включают:
1. Прямое распространение (Forward Propagation): Процесс, при котором входные данные проходят через сеть, генерируя выходной результат.
2. Обратное распространение ошибки (Backpropagation): Алгоритм, используемый для обучения сети путем корректировки весов связей между нейронами на основе ошибки предсказания.