В поисках кота Шредингера. Квантовая физика и реальность. Джон Гриббин

Чтение книги онлайн.

Читать онлайн книгу В поисках кота Шредингера. Квантовая физика и реальность - Джон Гриббин страница 19

В поисках кота Шредингера. Квантовая физика и реальность - Джон Гриббин

Скачать книгу

верного понимания, почему атомы дергаются, однако предоставила Бору достаточно сведений, чтобы пойти дальше. Его модель оказалась в итоге неверна почти во всем, однако она обеспечила переход к истинной квантовой теории атома, и это неоценимо. К сожалению, из-за своей простоты, легкого смешения квантовых идей с классическими и привлекательной картины атома в виде миниатюрной Солнечной системы эта модель продолжает существовать на первых страницах не только популярных книг, но и учебников и университетских работ. Если вы изучали атомы в школе, я уверен, что вы изучали модель атома Бора, как бы ее ни называли на уроках. Не буду призывать вас забыть все, что вам говорили, однако приготовьтесь к тому, что во многом все обстоит иначе. И вы должны постараться забыть об электронах в виде маленьких «планет», вращающихся вокруг ядра, – эта первая мысль Бора оказалась совсем не верна. Электрон представляет собой лишь нечто, находящееся рядом с ядром и обладающее определенным количеством энергии и рядом других свойств. Как мы убедимся, он движется таинственным образом.

      Крупный ранний успех работы Бора в 1913 году состоял в том, что она прекрасно объяснила спектр излучения водорода – простейшего атома. Корни спектроскопии как науки уходят в ранние годы XIX столетия, когда Уильям Волластон открыл темные линии в спектре излучения Солнца, однако именно после работы Бора она стала инструментом для исследования структуры атома. Подобно Бору, смешавшему во имя прогресса классические и квантовые теории, нам придется сделать шаг назад от идей Эйнштейна о световых квантах, чтобы понять, как работает спектроскопия. В этом контексте нет смысла считать свет чем-то иным, нежели электромагнитной волной[9].

      Как установил Ньютон, белый цвет состоит из всех цветов радуги, или спектра. Каждый цвет соответствует различной длине световой волны, и, используя стеклянную призму, можно разложить белый цвет на цветовые компоненты, то есть получить спектр, в котором волны разных частот располагаются на экране или фотопластинке друг под другом. Синие и фиолетовые цвета, имеющие короткие длины волн, находятся на одном конце оптического спектра, а длинноволновые красные – на другом. Однако спектр распространяется и дальше – в обе стороны за пределами видимого диапазона. При таком разложении солнечного света получающийся спектр имеет очень резкие темные линии в определенных местах, соответствующих определенным частотам. Не зная, почему возникают эти линии, исследователи Йозеф Фраунгофер, Роберт Бунзен (его именем названа горелка Бунзена) и Густав Кирхгоф в XIX веке экспериментально установили, что различные химические элементы дают собственный набор спектральных линий. Когда элемент (например, натрий) подогревается на горелке Бунзена, он приобретает характерное свечение (в случае натрия – желтого цвета), которое является следствием сильного излучения в виде яркой линии или линий на одном участке спектра. Когда белый цвет проходит через жидкость или газ, содержащие тот же элемент,

Скачать книгу


<p>9</p>

Полноценная квантовая теория показывает, что свет является и волной, и частицей, однако мы еще не добрались до этого этапа.