Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ. Коллектив авторов

Чтение книги онлайн.

Читать онлайн книгу Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - Коллектив авторов страница 37

Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - Коллектив авторов

Скачать книгу

а целый диапазон, в котором с некоторой, заданной исследователем, вероятностью, лежит неизвестный параметр распределения). При проверке статистической гипотезы исследователь сначала формулирует предположение про значение неизвестного параметра генеральной совокупности, затем устанавливает из этого предположения некоторое следствие, которое должно наблюдаться, если гипотеза верна, и не должно, если она ошибочна. Далее остается только узнать, наблюдается ли это следствие в данных или нет, и сделать вывод (конечно, не однозначный, а допускающий некоторую вероятность ошибки – ведь сами данные рассматриваются как результат случайного эксперимента).

      Описанная логика работы с данными как результатами реализации случайных величин особенно естественна в случае количественных показателей, которые могут непосредственно отождествляться со случайными величинами. Так, случайной величиной можно назвать ВВП / человек в отдельном государстве, уровень безработицы, число респондентов в выборке, заявивших о поддержке некоторой реформы и др.

      Основными числовыми характеристиками случайных величин, позволяющими описать данные в выборке, являются меры центральной (средней) тенденции и меры разброса относительно среднего. Они характеризуют распределение, которым описываются признаки, и могут способствовать выбору методов их анализа.

      К мерам центральной тенденции относятся среднее арифметическое, медиана и мода. Среднее арифметическое является точечной оценкой математического ожидания E (x) (среднего значения в генеральной совокупности), медиана – значение показателя, меньше которого располагаются 50% наблюдений35, мода – наиболее распространенное значение, способ оценить среднее для категориальных переменных.

      Дисперсия Var (x) – мера разброса относительно среднего. Она рассчитывается как усредненная сумма квадратов отклонений от среднего. Квадратный корень из дисперсии называется стандартным отклонением и тоже является мерой разброса, но имеет преимущество перед дисперсией поскольку измеряется в тех же самых единицах, что и сам признак, а дисперсия – в единицах в квадрате.

      Определение типа шкалы и получение числовых, а также графических характеристик изучаемых признаков составляют подготовительный этап анализа данных. Исходя из полученной информации, требуется определить корректный метод для содержательной задачи, составляющей интерес исследователя: выявления взаимосвязи признаков, установления причинно-следственной связи, прогнозирования, классификации, снижения размерности и пр.

      Задачу выявления связи между двумя номинальными признаками решает анализ таблиц сопряженности признаков, являющихся результатом их перекрестной классификации. Самая простая таблица сопряженности – это таблица 2x2, в которой строкам соответствуют два значения признака А, а столбцам – два

Скачать книгу


<p>35</p>

К примеру, при изучении душевого дохода адекватнее использовать медиану, потому что большая часть населения получает доходы ниже среднего, однако есть немногочисленные группы населения, получающие очень высокие доходы, что завышает значение среднего арифметического.