Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ. Коллектив авторов
Чтение книги онлайн.
Читать онлайн книгу Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - Коллектив авторов страница 33
Второй эксперимент сфокусирован на стратегии самого эффективного актора, в нашем случае x3=1,8 . Пусть только этот игрок инвестирует в изменение институтов, менее эффективные акторы x1=0,2 и x2=1 все ресурсы тратят на производство. Вектор политических стратегий тогда принимает вид (0,0,π3), где π3 – вновь случайная равномерно распределенная величина. Но теперь мы позволим ей принимать значения от 0 до 1, давая самому эффективному актору возможность инвестировать в политику любую долю имеющегося у него ресурса.
Казалось бы, запрет для всех акторов, кроме наиболее эффективного, на институциональное влияние гарантирует выход на траекторию успешного развития: правило отбора . Ресурсы, инвестированные в политику, определяют политический вес каждого актора. Политические веса определяют положение селектора st имеет только одно равновесное состояние, соответствующее высокой эффективности 1,8. Причем переход селектора в это равновесное состояние в системе без политической конкуренции произойдет очень быстро – уже в первый момент времени независимо от начального условия st=0.
Однако здесь снова срабатывает предел политического инвестирования. Мы рассчитали конкретное пороговое значение π3, при превышении которого система переходит к «деградирующему» сценарию. Оно находится в зависимости от выбранного параметра распределительного неравенства β. При низких бета, когда распределительные преимущества эффективного актора невелики, ограничения на инвестиции в политику сильнее. Это связано с тем, что неэффективные акторы получают достаточно значительный объем ресурсов, из которых в полезный продукт превращается лишь часть. В сочетании с большими затратами на политику ведущего эффективного актора это создает дефицит ресурсов для обеспечения роста.
На рис. 8 приводится график зависимости критического значения π3, превышение которого ведет к изменение сценария E∞>1 на сценарий E∞<1, от уровня распределительного неравенства.
Как видно из графика, чтобы система была успешной, доля инвестиций в политику эффективного актора (при условии, что он – единственный инвестирующий) не может ни при каком уровне распределительного неравенства превышать 0,48–0,49. Когда преимущества эффективного актора в распределении малы, этот потолок снижается до 0,2–0,3.
Рис.