Убийственные большие данные. Как математика превратилась в оружие массового поражения. Кэти О'Нил

Чтение книги онлайн.

Читать онлайн книгу Убийственные большие данные. Как математика превратилась в оружие массового поражения - Кэти О'Нил страница 19

Убийственные большие данные. Как математика превратилась в оружие массового поражения - Кэти О'Нил Цифровая экономика и цифровое будущее

Скачать книгу

его самооценки. Если мы лишим этих трейдеров их физических тел и начнем воспринимать их исключительно как набор алгоритмов, эти алгоритмы будут постоянно сосредоточены на оптимизации коэффициента Шарпа. В идеале он будет расти – или, по крайней мере, не падать слишком низко. Поэтому, если один из отчетов по рискованности свопов кредитного дефолта поднимет степень риска одного из ключевых вкладов трейдера, его коэффициент Шарпа упадет. Это может стоить ему сотен тысяч долларов, когда дело дойдет до расчета его ежегодного бонуса.

      Очень быстро я осознала, что занимаюсь просто штамповкой привычных решений. В 2011 году настало время снова сменить работу – и я увидела, что рынок для математиков вроде меня стремительно расширяется. В то время мне было достаточно напечатать два слова в моем резюме – и я уже была провозглашена новым специалистом по обработке информации, готовым погрузиться в мир онлайн-экономики. В результате я оказалась в нью-йоркском стартапе под названием Intent Media.

      Начала я с разработки моделей, которые предсказывали поведение посетителей сайтов, посвященных путешествиям. Ключевой вопрос заключался в том, с какой целью кто-то заходит на сайт Expedia: просто посмотреть на картинки или собирается в самом деле потратить деньги? Те, кто не собирался ничего покупать, мало что значили в качестве потенциального источника дохода. Поэтому таким пользователям мы показывали рекламу фирм-конкурентов – Travelocity или Orbitz. Если посетитель кликал по рекламе, это приносило нам несколько центов – лучше, чем ничего. Однако мы не собирались показывать эти объявления серьезным покупателям. В худшем случае мы получали десяток центов дохода за размещение рекламы – и посылали при этом потенциальных клиентов к конкурентам, где они могли оставить тысячи долларов за гостиничные номера в Лондоне и Токио. Понадобились бы тысячи просмотров рекламных объявлений, чтобы возместить хотя бы несколько сотен долларов из упущенной прибыли от этих клиентов. Поэтому было крайне важно удержать их на нашем сайте.

      Моей задачей была разработка алгоритма, который мог бы отличить созерцателя витрин от покупателя. Ориентироваться при этом можно было на несколько очевидных сигналов. Зарегистрировался ли человек на сайте? Совершал ли он уже покупки? Я также обращала внимание и на другие факторы, например на время дня и дату. Определенные недели были особенно урожайными. Например, один из пиков приходился на День поминовения в середине весны, когда огромное количество людей практически одновременно определялись со своими планами на лето. Мой алгоритм придавал больше ценности покупателям в течение подобных периодов: в это время повышалась вероятность, что они действительно что-то купят.

      Принципы работы статистики, как выяснилось, было очень легко перенести из хедж-фондов в онлайн-коммерцию: самой большой разницей было то, что вместо движений в рынке я теперь предсказывала клики конкретных людей.

      На самом деле я увидела огромное количество

Скачать книгу