ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков
Чтение книги онлайн.
Читать онлайн книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков страница 26
Это письмо было отправлено Ферма в августе 1659 г. его давнему другу и бывшему коллеге по парламенту Тулузы королевскому библиотекарю Пьеру де Каркави, от которого его получил известный французский учёный Христиан Гюйгенс (Christiaan Huygens), первым возглавивший созданную в 1666 г. Французскую Академию Наук. Здесь мы приведём только отдельные выдержки из письма Ферма, которые нас особенно интересуют [26].
«Сводка открытий в науке о числах. …
1. Поскольку обычные методы, изложенные в Книгах, не достаточны для доказательства очень трудных предложений, я нашёл, наконец, для их решения совершенно особый путь. Я назвал этот способ доказательства бесконечным или неопределённым спуском. Сначала я пользовался им только для доказательства отрицательных предложений, как, например:
…что не существует прямоугольного треугольника в числах, площадь которого была бы квадратом». Подробности см. Приложение II.
Наукой о числах названа арифметика и дальнейшее содержание письма не оставляет в этом никаких сомнений. Именно с арифметики начинаются не только математические, но и все другие науки. А в самой арифметике метод спуска один из основополагающих. Далее даются примеры задач, решение которых без этого метода не только очень затруднено, но иногда и вообще вряд ли возможно. Здесь мы назовём только некоторые из этих примеров.
«2. Долгое время я не мог приложить мой метод к утвердительным предложениям, потому что обходы и окольные пути для достижения цели гораздо более трудны, чем те, которые послужили мне для отрицательных предложений. Поэтому, когда мне надо было доказать, что каждое простое число, которое превосходит на 1 кратное четырех, состоит из <суммы> двух квадратов, я был в сильнейшем затруднении. Но, наконец, многократно повторенные размышления пролили свет, которого мне не доставало, и утвердительное предложение стало возможным трактовать моим методом с помощью некоторых новых принципов, которые необходимо было к ним присоединить. Этот прогресс в моих рассуждениях для случая утвердительных предложений таков: если некоторое простое число, которое превосходит на единицу кратное 4-х, не состоит из двух квадратов, то имеется простое число той же природы, меньшее данного, а затем третье, ещё меньшее, и т.д. спускаясь до тех пор, пока не придёте к числу 5, которое является наименьшим из всех чисел этой природы. Оно, следовательно, не может состоять из двух квадратов, что, однако имеет место. Отсюда можно заключить путём доказательства от противного, что все простые числа этой природы должны состоять из двух квадратов».
Эту теорему Ферма