ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков
Чтение книги онлайн.
Читать онлайн книгу ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА - Юрий Вениаминович Красков страница 32
В примере Диофанта число 16 раскладывается на сумму двух квадратов и его метод даёт одно из решений 42=202/52=162/52+122/52, а также бесчисленное множество других подобных решений49. Но ведь это же не решение задачи, а всего лишь доказательство того, что любой целочисленный квадрат сколько угодно раз можно составить из двух квадратов, либо в целых, либо в дробных рациональных числах. Отсюда следует, что практическая ценность метода Диофанта ничтожна, поскольку с точки зрения арифметики дробные квадраты – это бессмыслица типа, скажем, треугольных прямоугольников или чего-то в этом роде. Очевидно, что эта задача должна решаться только в целых числах, но у Диофанта такое решение отсутствует и, естественно, Ферма стремится сам решить эту задачу, тем более что вначале ему она видится совсем не сложной.
Итак, пусть в уравнении a2+b2=c2 дано число c и нужно найти числа a и b. Проще всего найти решение, разложив число c на простые множители:
c=pp1p2…pk; тогда
c2=p2p12p22…pk2=p2(p1p2…pk)2=pi2N2
Теперь становится очевидно, что число c2 раскладывается на a2+b2 только в том случае, если хотя бы одно из чисел pi2 также раскладывается на сумму двух квадратов50. Так ведь это же замкнутый круг, поскольку нужно опять число в квадрате разложить на сумму двух квадратов. Но ситуация уже совсем иная, т.к. теперь-то нужно раскладывать простое число в квадрате и это обстоятельство становится основой для решения поставленной задачи.
Если решение возможно, то должны существовать такие простые числа, которые раскладываются на сумму двух квадратов и только в этом случае в соответствии с тождеством пифагорейцев можно получить:
pi2 = (x2+y2)2 = (x2−y2)2 + (2xy)2
т.е. квадрат такого простого числа будет также суммой двух квадратов. Отсюда появляется поистине грандиозное научное открытие Ферма51:
Все простые числа типа 4n+1 единственным образом раскладываются на сумму двух квадратов, т.е. уравнение p=4n+1=x2+y2 имеет единственное решение в целых числах. А все остальные простые числа, относящиеся к типу 4n−1, не могут быть разложены таким же образом.
В письме-завещании Ферма показано, как это может быть доказано методом спуска. Однако доказательство Ферма не сохранилось и эту задачу решил Эйлер, которому пришлось для этого в течение целых семи лет задействовать всю свою интеллектуальную мощь52. Теперь уже решение задачи Диофанта выглядит очевидным. Если среди простых множителей числа c нет ни одного относящегося к типу 4n+1, то и число c2 не может быть разложено на сумму двух квадратов. А если хотя бы одно такое число pi есть, то через тождество пифагорейцев можно получить:
c2= N2pi2= (Nx)2+(Ny)2
где x= u2−v2;
49
В оригинале решение задачи Диофанта следующее. «Пусть надо разложить число 16 на два квадрата. Положим, что 1-й равен x2, тогда 2-й будет 16 − x2. Составляю квадрат из некоторого количества x минус столько единиц, сколько их в стороне 16-ти; пусть это будет 2x – 4. Тогда сам этот квадрат равен 4x2–16 x +16. Он должен равняться 16 − x2. Прибавим к обеим сторонам недостающее и вычтем подобные из подобных. Тогда 5x2 равно 16 x и x окажется равным 16-ти пятым. Один квадрат 256/25, а другой 144/25; оба сложенных дают 400/25, или 16, и каждый будет квадратом» [19].
50
Если c2= p2N2 и p2, (а также любой другой pi2 из простых множителей c), не раскладывается на сумму двух квадратов, т.е. p2=q2+r, где число r не есть квадрат, то c2=p2(q2+r)= (pq)2+p2r, и здесь во всех вариантах чисел q и r получится, что p2r тоже не есть квадрат, тогда число c2 также не может быть суммой двух квадратов.
51
Это открытие впервые изложено в письме Ферма к Мерсенну от 25.12.1640 г. Здесь же в п. 2-30 сообщается: «
52
Доказательство Эйлера неконструктивно, т.е. оно не дает метода вычисления двух квадратов, из которых состоит простое число типа 4n+1. Пока у этой задачи есть только решение Гаусса, но оно получено в рамках очень сложной системы «Арифметики вычетов». Решение, о котором сообщал Ферма, до сих пор остаётся неизвестным. Впрочем, см. комментарий 161.