The Way To Geometry. Petrus Ramus

Чтение книги онлайн.

Читать онлайн книгу The Way To Geometry - Petrus Ramus страница 11

Автор:
Серия:
Издательство:
The Way To Geometry - Petrus Ramus

Скачать книгу

4. to 9. (for 2/3 2/3 is 4/9.) Therefore the reason of 8. unto 18, that is, of the first figure unto the second, is of 4. unto 9. In Triangles, which are the halfes of rightangled parallelogrammes, there is the same truth, and yet by it selfe not rationall and to be expressed by numbers.

      Said numbers are alike in the trebled reason of their homologall sides; As for example, 60. and 480. are like solids; and the solids also comprehended in those numbers are like-solids, as here thou seest: Because their sides, 4. 3. 5. and 8. 6. 10. are proportionall betweene themselves. But the reason of 60. to 480. is the reason of 4. to 8. trebled, thus 4/8 4/8 4/8 = 64/512; that is of 1. unto 8. or octupla, which you shall finde in the dividing of 480. by 60.

Like Solids.

      Thus farre of the first part of this element: The second, that like figurs have a meane, proportional lesse by one, then are their dimensions, shall be declared by few words. For plaines having but two dimensions, have but one meane proportionall, solids having three dimensions, have two meane proportionalls. The cause is onely Arithmeticall, as afore. For where the bounds are but 4. as they are in two plaines, there can be found no more but one meane proportionall, as in the former example of 8. and 18. where the homologall or correspondent sides are 2. 3. and 4. 6.

      Therefore,

      Againe by the same rule, where the bounds are 6. as they are in two solids, there may bee found no more but two meane proportionalls: as in the former solids 30. and 240. where the homologall or correspondent sides are 2. 4. 3. 6. 5. 10.

      Therefore,

Creation of Like Figures.Creation of Like Solids.

      Therefore,

      25. If right lines be continually proportionall, more by one then are the dimensions of like figures likelily situate unto the first and second, it shall be as the first right line is unto the last, so the first figure shall be unto the second: And contrariwise.

      Out of the similitude of figures two consectaries doe arise, in part only, as is their axiome, rationall and expressable by numbers. If three right lines be continually proportionall, it shall be as the first is unto the third: So the rectilineall figure made upon the first, shall be unto the rectilineall figure made upon the second, alike and likelily situate. This may in some part be conceived and understood by numbers. As for example, Let the lines given, be 2. foot, 4. foote, and 8 foote. And upon the first and second, let there be made like figures, of 6. foote and 24. foote; So I meane, that 2. and 4. be the bases of them. Here as 2. the first line, is unto 8. the third line: So is 6. the first figure, unto 24. the second figure, as here thou seest.

Proportionall Lines and Figures.

      Againe, let foure lines continually proportionall, be 1. 2. 4. 8. And let there bee two like solids made upon the first and second: upon the first, of the sides 1. 3. and 2. let it be 6. Upon the second, of the sides 2. 6. and 4. let it be 48. As the first right line 1. is unto the fourth 8. So is the figure 6. unto the second 48. as is manifest by division. The examples are thus.

Proportionall Lines and Solids.

      Moreover by this Consectary a way is laid open leading unto the reason of doubling, treabling, or after any manner way whatsoever assigned increasing of a figure given. For as the first right line shall be unto the last: so shall the first figure be unto the second.

      And

      26. If foure right lines bee proportionall betweene themselves: Like figures likelily situate upon them, shall be also proportionall betweene themselves: And contrariwise, out of the 22. p vj. and 37. p xj.

      The proportion may also here in part bee expressed by numbers: And yet a continuall is not required, as it was in the former.

      In Plaines let the first example be, as followeth.

Two Pairs of Figures.

      The cause of proportionall figures, for that twice two figures have the same reason doubled.

Two Pairs of Solids.

      In Solids let this bee the second example. And yet here the figures are not proportionall unto the right lines, as before figures of equall heighth were unto their bases, but they themselves are proportionall one to another. And yet are they not proportionall in the same kinde of proportion.

      The cause also is here the same, that was before: To witt, because twice two figures have the same reason trebled.

      27. Figures filling a place, are those which being any way set about the same point, doe leave no voide roome.

      This was the definition of the ancient Geometers, as appeareth out of Simplicius, in his commentaries upon the 8. chapter of Aristotle's iij. booke of Heaven: which kinde of figures Aristotle in the same place deemeth to bee onely ordinate, and yet not all of that kind. But only three among the Plaines, to witt a Triangle, a Quadrate, and a Sexangle: amongst Solids, two; the Pyramis, and the Cube. But if the filling of a place bee judged by right angles, 4. in a Plaine, and 8. in a Solid, the Oblong of plaines, and the Octahedrum of Solids shall (as shall appeare in their places) fill a place; And yet is not this Geometrie of Aristotle accurate enough. But right angles doe determine this sentence, and so doth Euclide out of the angles demonstrate, That there are onely five ordinate solids; And so doth Potamon the Geometer, as Simplicus testifieth, demonstrate the question of figures filling a place. Lastly, if figures, by laying of their corners together, doe make in a Plaine 4. right angles, or in a Solid 8. they doe fill a place.

      Of this probleme the ancient geometers have written, as we heard even now: And of the latter writers, Regiomontanus is said to have written accurately; And of this argument Maucolycus hath promised a treatise, neither of which as yet it hath beene our good hap to see.

      Neither of these are figures of this nature, as in their due places shall be proved and demonstrated.

      28. A round figure is that, all whose raies are equall.

Round Objects.

      Such in plaines shall the Circle be, in Solids the Globe or Spheare. Now this figure, the Round, I meane, of all Isoperimeters is the greatest, as appeared before at the 15. e. For which cause Plato, in his Timæus or his Dialogue of the World said; That this figure is of all other the greatest. And therefore God, saith he, did make the world of a sphearicall forme, that within his compasse it might the better containe all things: And Aristotle, in his Mechanicall problems, saith; That this figure is the beginning, principle, and cause of all miracles. But those miracles shall in their time God willing, be manifested and showne.

      Rotundum, a Roundle, let it be here used for Rotunda figura, a round figure. And in deede Thomas Finkius or Finche, as we would call him, a learned Dane, sequestring this argument from the rest of the body of Geometry, hath intituled that his worke De Geometria rotundi, Of the Geometry of the Round or roundle.

      29. The diameters of a roundle are cut in two by equall raies.

      The reason is, because the halfes of the diameters, are the raies. Or because the diameter is nothing else but a

Скачать книгу