The Way To Geometry. Petrus Ramus
Чтение книги онлайн.
Читать онлайн книгу The Way To Geometry - Petrus Ramus страница 7
Therefore,
16. Lines which are parallell to one and the same line, are also parallell one to another.
This element is specially propounded and spoken of right lines onely, and is demonstrated at the 30. p. j. But by an addition of equall distances, an equall distance is knowne, as here.
The third Booke of Geometry. Of an Angle
1. A lineate is a Magnitude more then long.
A New forme of doctrine hath forced our Authour to use oft times new words, especially in dividing, that the logicall lawes and rules of more perfect division by a dichotomy, that is into two kindes, might bee held and observed. Therefore a Magnitude was divided into two kindes, to witt into a Line and a Lineate: And a Lineate is made the genus of a surface and a Body. Hitherto a Line, which of all bignesses is the first and most simple, hath been described: Now followeth a Lineate, the other kinde of magnitude opposed as you see to a line, followeth next in order. Lineatum therefore a Lineate, or Lineamentum, a Lineament, (as by the authority of our Authour himselfe, the learned Bernhard Salignacus, who was his Scholler, hath corrected it) is that Magnitude in which there are lines: Or which is made of lines, or as our Authour here, which is more then long: Therefore lines may be drawne in a surface, which is the proper soile or plots of lines; They may also be drawne in a body, as the Diameter in a Prisma: the axis in a spheare; and generally all lines falling from aloft: And therfore Proclus maketh some plaine, other solid lines. So Conicall lines, as the Ellipsis, Hyperbole, and Parabole, are called solid lines because they do arise from the cutting of a body.
2. To a Lineate belongeth an Angle and a Figure.
The common affections of a Magnitude were to be bounded, cutt, jointly measured, and adscribed: Then of a line to be right, crooked, touch'd, turn'd about, and wreathed: All which are in a lineate by meanes of a line. Now the common affections of a Lineate are to bee Angled and Figured. And surely an Angle and a figure in all Geometricall businesses doe fill almost both sides of the leafe. And therefore both of them are diligently to be considered.
3. An Angle is a lineate in the common section of the bounds.
So Angulus Superficiarius, a superficiall Angle, is a surface consisting in the common section of two lines: So angulus solidus, a solid angle, in the common section of three surfaces at the least.
[But the learned B. Salignacus hath observed, that all angles doe not consist in the common section of the bounds, Because the touching of circles, either one another, or a rectilineal surface doth make an angle without any cutting of the bounds: And therefore he defineth it thus: Angulus est terminorum inter se invicem inclinantium concursus: An angle is the meeting of bounds, one leaning towards another.] So is aei. a superficiall angle: [And such also are the angles ouy. and bcd.] so is the angle o. a solid angle, to witt comprehended of the three surfaces aoi. ioe. and aoe. Neither may a surface, of 2. dimensions, be bounded with one right line: Nor a body, of three dimensions, bee bounded with two, at lest beeing plaine surfaces.
4. The shankes of an angle are the bounds compreding the angle.
Scèle or Crura, the Shankes, Legges, H. are the bounds insisting or standing upon the base of the angle, which in the Isosceles only or Equicrurall triangle are so named of Euclide, otherwise he nameth them Latera, sides. So in the examples aforesaid, ea. and ei. are the shankes of the superficiary angle e; And so are the three surfaces aoi. ieo. and aeo. the shankes of the said angle o. Therefore the shankes making the angle are either Lines or Surfaces: And the lineates formed or made into Angles, are either Surfaces or Bodies.
5. Angles homogeneall, are angles of the same kinde, both in respect of their shankes, as also in the maner of meeting of the same: [Heterogeneall, are those which differ one from another in one, or both these conditions.]
Therefore this Homogenia, or similitude of angles is twofolde, the first is of shanks; the other is of the manner of meeting of the shankes: so rectilineall right angles, are angles homogeneall betweene themselves. But right-lined right angles, and oblique-lined right angles between themselves, are heterogenealls. So are neither all obtusangles compared to all obtusangles: Nor all acutangles, to all acutangles, homogenealls, except both these conditions doe concurre, to witt the similitude both of shanke and manner of meeting. Lunularis, a Lunular, or Moonlike corner angle is homogeneall to a Systroides and Pelecoides, Hatchet formelike, in shankes: For each of these are comprehended of peripheries: The Lunular of one convexe; the other concave; as iue. The Systroides of both convex, as iao. The Pelecoides of both concave, as eau. And yet a lunular, in respect of the meeting of the shankes is both to the Systroides and Pelecoides heterogeneall: And therefore it is absolutely heterogeneall to it.
6. Angels congruall in shankes are equall.
This is drawne out of the 10. e j. For if twice two shanks doe agree, they are not foure, but two shankes, neither are they two equall angles, but one angle. And this is that which Proclus speaketh of, at the 4. p j. when hee saith, that a right lined angle is equall to a right lined angle, when one of the shankes of the one put upon one of the shankes of the other, the other two doe agree: when that other shanke fall without, the angle of the out-falling shanke is the greater: when it falleth within, it is lesser: For there is comprehendeth; here it is comprehended.
Notwithstanding although congruall or agreeable angles be equall: yet are not congruity and equality reciprocall or convertible: For a Lunular may bee equall to a right lined right angle, as here thou seest: For the angles of equall semicircles ieo. and aeu. are equall, as application doth shew. The angle aeo. is common both to the right angle aei. and to the lunar aueo. Let therefore the equall angle aeo. bee added to both: the right angle aei. shall be equall to the Lunular aueo.
The same Lunular also may bee equall to an obtusangle and Acutangle, as the same argument will demonstrate.
Therefore,
7. If an angle being equicrurall to an other angle, be also equall to it in base, it is equall: And if an angle having equall shankes with another, bee equall to it in the angle, it is also equall to it in the base. è 8. & 4. p j.
For such angles shall be congruall or agreeable in shanks, and also congruall in bases. Angulus isosceles, or Angulus æquicrurus, is a triangle having equall shankes unto another.
8. And if an angle equall in base to another, be also equall to it in shankes, it is equall to it.
For the congruency is the same: And yet if equall angles bee equall in base, they are not by and by equicrurall, as in the angles of the same section will appeare, as here. And so of two equalities, the first is reciprocall: The second is not. [And therefore is this Consectary, by the learned B. Salignacus, justly, according to the judgement of the worthy Rud. Snellius, here cancelled; or quite put out: For angles may be equall, although they bee unequall in shankes or in bases, as here, the angle a. is not greater then the angle o, although the angle o have both greater shankes and greater base then the angle a.]
And