The Way To Geometry. Petrus Ramus
Чтение книги онлайн.
Читать онлайн книгу The Way To Geometry - Petrus Ramus страница 8
As here thou seest; [The angles eai. and uoy. are equicrurall, that is their shankes are equall one to another; But the base ei is greater then the base uy: Therefore the angle eai, is greater then the angle uoy. And contrary wise, they being equicrurall, and the angle eai. being greater then the angle uoy. The base ei. must needes be greater then the base uy.]
And
10. If an angle equall in base, be lesse in the inner shankes, it is greater.
Or as the learned Master T. Hood doth paraphrastically translate it. If being equall in the base, it bee lesser in the feete (the feete being conteined within the feete of the other angle) it is the greater angle. [That is, if one angle enscribed within another angle, be equall in base, the angle of the inscribed shall be greater then the angle of the circumscribed.]
As here the angle aoi. within the angle aei. And the bases are equall, to witt one and the same; Therefore aoi. the inner angle is greater then aei. the outter angle. Inner is added of necessity: For otherwise there will, in the section or cutting one of another, appeare a manifest errour. All these consectaries are drawne out of that same axiome of congruity, to witt out of the 10. e j. as Proclus doth plainely affirme and teach: It seemeth saith hee, that the equalities of shankes and bases, doth cause the equality of the verticall angles. For neither, if the bases be equall, doth the equality of the shankes leave the same or equall angles: But if the base bee lesser, the angle decreaseth: If greater, it increaseth. Neither if the bases bee equall, and the shankes unequall, doth the angle remaine the same: But when they are made lesse, it is increased: when they are made greater, it is diminished: For the contrary falleth out to the angles and shankes of the angles. For if thou shalt imagine the shankes to be in the same base thrust downeward, thou makest them lesse, but their angle greater: but if thou do againe conceive them to be pul'd up higher, thou makest them greater, but their angle lesser. For looke how much more neere they come one to another, so much farther off is the toppe removed from the base: wherefore you may boldly affirme, that the same base and equall shankes, doe define the equality of Angels. This Poclus,
Therefore,
11. If unto the shankes of an angle given, homogeneall shankes, from a point assigned, bee made equall upon an equall base, they shall comprehend an angle equall to the angle given. è 23. p j. & 26. p xj.
[This consectary teacheth how unto a point given, to make an angle equall to an Angle given. To the effecting and doing of each three things are required; First, that the shankes be homogeneall, that is in each place, either straight or crooked: Secondly, that the shankes bee made equall, that is of like or equall bignesse: Thirdly, that the bases be equall: which three conditions if they doe meete, it must needes be that both the angles shall bee equall: but if one of them be wanting, of necessity againe they must be unequall.]
This shall hereafter be declared and made plaine by many and sundry practises: and therefore here we bring no example of it.
12. An angle is either right or oblique.
Thus much of the Affections of an angle; the division into his kindes followeth. An angle is either Right or Oblique: as afore, at the 4 e ij. a line was right or straight, and oblique or crooked.
13. A right angle is an angle whose shankes are right (that is perpendicular) one unto another: An Oblique angle is contrary to this.
As here the angle aio. is a right angle, as is also oie. because the shanke oi. is right, that is, perpendicular to ae. [The instrument wherby they doe make triall which is a right angle, and which is oblique, that is greater or lesser then a right angle, is the square which carpenters and joyners do ordinarily use: For lengthes are tried, saith Vitruvius, by the Rular and Line: Heighths, by the Perpendicular or Plumbe: And Angles, by the square.] Contrariwise, an Oblique angle it is, when the one shanke standeth so upon another, that it inclineth, or leaneth more to one side, then it doth to the other: And one angle on the one side, is greater then that on the other.
Therefore,
14. All straight-shanked right angles are equall.
[That is, they are alike, and agreeable, or they doe fill the same place; as here are aio. and eio. And yet againe on the contrary: All straight shanked equall angles, are not right-angles.]
The axiomes of the equality of angles were three, as even now wee heard, one generall, and two Consectaries: Here moreover is there one speciall one of the equality of Right angles.
Angles therfore homogeneall and recticrurall, that is whose shankes are right, as are right lines, as plaine surfaces (For let us so take the word) are equall right angles. So are the above written rectilineall right angles equall: so are plaine solid right angles, as in a cube, equall. The axiome may therefore generally be spoken of solid angles, so they be recticruralls: Because all semicircular right angles are not equall to all semicircular right angles: As here, when the diameter is continued it is perpendicular, and maketh twice two angles, within and without, the outter equall betweene themselves, and inner equall betweene themselves: But the outer unequall to the inner: And the angle of a greater semicircle is greater, then the angle of a lesser. Neither is this affection any way reciprocall, That all equall angles should bee right angles. For oblique angles may bee equall betweene themselves: And an oblique angle may bee made equall to a right angle, as a Lunular to a rectilineall right angle, as was manifest, at the 6 e.
The definition of an oblique is understood by the obliquity of the shankes: whereupon also it appeareth; That an oblique angle is unequall to an homogeneall right angle: Neither indeed may oblique angles be made equall by any lawe or rule: Because obliquity may infinitly bee both increased and diminished.
15. An oblique angle is either Obtuse or Acute.
One difference of Obliquity wee had before at the 9 e ij. in a line, to witt of a periphery and an helix; Here there is another dichotomy of it into obtuse and acute: which difference is proper to angles, from whence it is translated or conferred upon other things and metaphorically used, as Ingenium obtusum, acutum; A dull, and quicke witte, and such like.
16. An obtuse angle is an oblique angle greater then a right angle. 11. d j.
Obtusus, Blunt or Dull; As here aei. In the definition the genus of both Species or kinds is to bee understood: For a right lined right angle is greater then a sphearicall right angle, and yet it is not an obtuse or blunt angle: And this greater inequality may infinitely be increased.
17. An acutangle is an oblique angle lesser then a right angle. 12. d j.
Acutus, Sharpe, Keene, as here aei. is. Here againe the same genus is to bee understood: because every