Энциклопедия финансового риск-менеджмента. Алексей Лобанов

Чтение книги онлайн.

Читать онлайн книгу Энциклопедия финансового риск-менеджмента - Алексей Лобанов страница 13

Энциклопедия финансового риск-менеджмента - Алексей Лобанов

Скачать книгу

f – купонная ставка облигации, то размер одного купонного платежа может быть найден по формуле:

      где q – размер купонного платежа;

      А – номинальная стоимость облигации;

      m – количество купонных выплат за год.

      Пример 1.10. Дана 9 %-ная купонная облигация с полугодовыми купонами и номинальной стоимостью 1000 долл. Определим поток платежей по облигации, когда до ее погашения остается 2,25 года.

      В данном случае f = 0,09, А = 1000 долл., m = 2. Значит,

      и поток платежей по облигации имеет вид:

      Цена купонной облигации должна совпадать с приведенной стоимостью потока платежей, обещаемых по этой облигации. Чтобы определить приведенную стоимость потока платежей, необходимо знать ставку дисконтирования, которая в данном случае является требуемой доходностью (required yield).

      Требуемая доходность для данной купонной облигации устанавливается на основе исследования внутренних доходностей финансовых инструментов, сравнимых с данной купонной облигацией. При этом учитываются такие факторы, как кредитный рейтинг эмитентов, ликвидность финансовых инструментов и т. д.

      Котируемая цена (clean price) купонных облигаций определяется в моменты времени, когда происходят выплаты очередных купонных платежей. Котируемая цена купонной облигации с полугодовыми купонами может быть найдена по формуле:

      где P – котируемая цена облигаций;

      

– размер одного купонного платежа;

      r – требуемая доходность;

      А – номинальная стоимость облигации;

      n – количество купонных платежей, остающихся до погашения облигации.

      Пример 1.11. Найдем цену 9 %-ной купонной облигации, номинальной стоимостью 1000 долл., когда до ее погашения остается 20 лет, а требуемая доходность составляет 8 %.

      В данном случае A = 1000 долл., f = 0,09,

= 45 долл., n = 40, r = 0,08.

      Котируемую цену облигации можно найти по формуле (1.18):

      Говорят, что купонная облигация продается по номиналу (par value), если ее котируемая цена совпадает с номинальной стоимостью. Купонная облигация продается по номиналу тогда и только тогда, когда купонная ставка облигации равна требуемой доходности.

      Облигация продается с премией (at a premium), если ее котируемая цена выше номинальной стоимости. Купонная облигация продается с премией тогда и только тогда, когда купонная ставка выше требуемой доходности. Размер премии для облигаций с полугодовыми купонами составляет:

      Говорят, что купонная облигация продается с дисконтом (at a discount), если ее котируемая цена ниже номинала. Облигация продается с дисконтом тогда и только тогда, когда купонная ставка облигации меньше требуемой доходности. Размер дисконта можно найти следующим образом:

      Пример 1.12. Облигация из примера 1.11 продается с премией, так как ее купонная ставка f = 0,09 выше требуемой доходности r = 0,08. Размер премии

Скачать книгу