Robot Learning from Human Teachers. Sonia Chernova

Чтение книги онлайн.

Читать онлайн книгу Robot Learning from Human Teachers - Sonia Chernova страница 5

Robot Learning from Human Teachers - Sonia Chernova Synthesis Lectures on Artificial Intelligence and Machine Learning

Скачать книгу

maintains a mental model of the learner’s understanding and structures the learning task appropriately with timely feedback and guidance. The learner contributes to the process by expressing their internal state via communicative acts (e.g., expressing understanding, confusion, attention, etc.). This reciprocal and tightly coupled interaction enables the learner to leverage from instruction to build the appropriate representations and associations.

      The situated learning process stands in contrast to typical scenarios of machine learning which are often neither interactive nor intuitive for a non-expert human partner. Since social learning mechanisms used by humans are both proven to be effective and naturally occurring across society, enabling robots to engage in social interaction with the user can lead to more flexible, efficient, personable and teachable machines that more closely match the user’s expectations in behavior.

      It is worth noting that despite its reliance on human teachers, the field of Learning from Demonstration has not focused much attention on the interactivity of the learning system. As we will see in Chapters 4 and 5, it is quite typical to first collect demonstrations in batch and then have a learning algorithm use this data to model a skill or task later. What the work highlighted in this chapter points out is the distinction between a typical batch process and the interactivity of a social learning process. We will return to this topic in Chapter 6, where we consider how to make an LfD process interactive through online learning, high level critiques of the robot’s exploration, and the incorporation of Active Learning.

      Figure 2.1: In this chapter we start with a look at the Human Teacher component of the LfD pipeline. A survey of human social learning provides insight into biases and expectations that a human may bring to the LfD process.

      Figure 2.2: Starting at an early ages, children use the information around them to learn from observation, experience, and instruction, striving to imitate the adults around them.

      In this chapter, we highlight characteristics of human social learning in the first three sections. We look at human motivation for learning, how human teachers scaffold the learning process, and what feedback human learners provide. All of these topics have implications for the technical design of robot learners, which are the focus of the remaining chapters of this book (Figure 2.1).

      In most Machine Learning scenarios, learning is an explicit activity. The system is designed to learn a particular thing at a particular time. With humans, on the other hand, there is an ever-present motivation for learning, a drive to improve oneself, and an ability to seek out the expertise of others. Some inspiring characteristics of a motivated learner include: a curiosity about new environments and experiences; the ability to recognize and exploit good sources of information, and to adopt such an information source as a role model; the desire to “be more like” that role model, which underlies all activity; and a sense of one’s level of mastery with acquired skills, further driving the motivation to explore and learn about the world at opportune times.

      Self-Determination Theory seeks to understand the mechanisms behind both intrinsic and extrinsic motivation in human behavior in general [224]. Here our focus is on situated learning interactions rather than self-motivated learning. We summarize two types of human motivation that lay the foundation for social learning interactions.

      Motivated to Interact

      A critical part of learning is gaining the ability to exploit the expertise of others [203]. Children put themselves in a good position to learn new things by being able to recognize, seek proximity to, and interact with their caregivers. They assume that the caregiver has their best interest in mind and even very young infants use this to their advantage when faced with an unknown situation [219].

      The ability and desire to engage, communicate, and interact with others is seen from an early age. By the time infants are two months old, they can actively engage in communicative interactions or turn-taking routines with adults. Studies have shown that infants can start and stop communication with their mother through gesture and gaze, and that it is the infants that control the pace of the turn taking interaction [130, 257]. This turn taking capability is the foundation of many situated learning activities, and is a precursor to more sophisticated interactions, such as imitation. For example, Arbib characterizes learning as assisted imitation, a dynamic turn-taking activity [274]. Bruner characterizes social scaffolding interactions in general as asymmetric cooperation that becomes symmetric over time [99]. Thus, turn-taking engagements are an underlying framework in which learning takes place.

      Turn-taking abilities are characteristically based on causal assumptions about the world. There is an expectation that the world, and particularly other actors in the world, will have some contingent response to one’s activity. Thus, the ability to take advantage of these social interactions requires a robot to have models of engagement, turn taking, and other fundamental social skills. A growing body of research within the HRI field has focused on models for engagement and turn-taking. The work of [218] and [110] identifies and generates “connection events” in order for a robot to maintain engagement with a human interaction partner. Other systems have been developed to control multimodal dialog for social robots, such as the work of [128] that controls dynamic switching of behaviors in the speech and gesture modalities, and the framework of [185] that controls task-based dialog using parallelized processes with interruption handling. The work of [62] and [63] centers on building autonomous robot controllers for successfully engaging in human-like turn-taking interactions, with a computational model for regulating the speaking floor that explicitly represents and reasons about all four components of the behavior regulation problem: seizing the speaking floor, yielding the floor, holding the floor, and auditing the owner of the floor.

      Motivated to Learn

      Another important influence on human learning is the idea of a “like-me” bias—the propensity and ability to map between actions seen by others and done by self is seen at a very early age [174]. As the child grows older, interacting with adults, they come to understand that the adult is “like-me” and is therefore a source of information about actions and skills [274]. For example, both Bruner and Leontiev indicate that play is intrinsically motivated and that the object of play is the desire to be like adults and participate in the adult world [107]. Lave and Wenger make a similar argument for the motivation of learning altogether [155]. They develop of theory of “Legitimate Peripheral Participation,” in which the driving force for learning a new practice is the learner’s motivation to form their identity and become a full participant in the practice. On a large scale this is the motivation of all learning, children “wanting to become full participants in the adult world.”

      Litowitz has a similar explanation: the child wishes to be like the adult and is thus motivated to imitate and be lead through activities by the adult. He goes one step further, however, and poses an elegant theory of why the process stops. The child gets out of the subordinate learner role and becomes capable on its own through the very same mechanism. The desire to be like the adult extends to the meta-activity level, the child comes to want to have the adult-role of structuring activity (wanting to choose the clothes they wear, resisting being told what to do, etc.) [163].

      Given this motivation to imitate, there are several ways in which an adult’s behavior can influence a child’s exploration or learning process. The following four social learning mechanisms

Скачать книгу