Совместимость. Как контролировать искусственный интеллект. Стюарт Рассел

Чтение книги онлайн.

Читать онлайн книгу Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел страница 12

Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел

Скачать книгу

выполняются оба условия, мы говорим, что стратегии находятся в равновесии. Такого рода равновесие называется равновесием Нэша в честь Джона Нэша, который в 1950 г. в возрасте 22 лет доказал, что оно существует для любого числа агентов с любыми рациональными предпочтениями, независимо от правил игры. После нескольких десятилетий борьбы с шизофренией Нэш выздоровел и в 1994 г. получил за эту работу Нобелевскую премию за достижения в экономических науках.

      В футбольном матче Алисы и Боба равновесие лишь одно. В других случаях их может быть несколько. Таким образом, концепция равновесия Нэша, в отличие от решений на основе ожидаемой полезности, не всегда ведет к уникальным рекомендациям о том, как действовать.

      Что еще хуже, бывают ситуации, когда равновесие Нэша может приводить к крайне нежелательным результатам. Одним из таких случаев является знаменитая «дилемма заключенного», название которой дал в 1950 г. научный руководитель Нэша Альберт Таккер[36]. Игра представляет собой абстрактную модель печально распространенных в реальном мире ситуаций, когда взаимодействие было бы лучше во всех смыслах, но люди тем не менее выбирают взаимное уничтожение.

      Вот как работает «дилемма заключенного». Алиса и Боб подозреваются в преступлении и оказываются в одиночном заключении. У каждого есть выбор: признать вину и заложить подельника или отказаться давать показания[37]. Если оба откажутся, то будут обвинены в менее серьезном преступлении и отсидят два года; если оба сознаются, то получат более серьезное обвинение и сядут на 10 лет; если один сознается, а второй запирается, то сознавшийся выходит на свободу, а второй садится на 20 лет.

      Итак, Алиса размышляет: «Если Боб решит признаться, то и мне следует признаваться (10 лет лучше, чем 20); если он планирует запираться, то мне лучше заговорить (выйти на свободу лучше, чем провести два года в тюрьме); так или иначе, нужно признаваться». Боб мыслит так же. В результате оба дают признательные показания и сидят 10 лет, тогда как, совместно отказавшись признавать вину, они могли бы отсидеть только два года. Проблема в том, что совместный отказ не является равновесием Нэша, потому что у каждого есть стимул предать другого и освободиться путем признания.

      Заметьте, что Алиса могла бы рассуждать следующим образом: «Как бы я ни мыслила, Боб тоже будет размышлять. В конце концов мы выберем одно и то же. Поскольку совместный отказ лучше совместного признания, нам нужно молчать». Эта разновидность рассуждения признает, что, будучи рациональными агентами, Алиса и Боб сделают согласующийся выбор, а не два независимых. Это лишь один из многих подходов, опробованных в теории игр в попытке получить менее удручающие решения «дилеммы заключенного»[38].

      Другой знаменитый пример нежелательного равновесия – трагедия общих ресурсов, впервые проанализированная в 1833 г. английским экономистом Уильямом Ллойдом[39], хотя дал ей название и привлек к ней внимание всего мира эколог Гаррет Хардин

Скачать книгу


<p>36</p>

Исходную задачу теории игр предложили Меррил Флуд и Мелвин Дрешер в RAND Corporation. Такер увидел матрицу выигрышей, зайдя к ним в кабинет, и предложил сопроводить ее «историей».

<p>37</p>

Специалисты теории игр обычно говорят, что Алиса и Боб смогли сотрудничать друг с другом (отказались давать показания) или предать подельника. Мне эти определения кажутся вводящими в заблуждение, поскольку «сотрудничество друг с другом» не тот выбор, который каждый агент может сделать индивидуально, а также из-за влияния общепринятого выражения «сотрудничать с полицией», когда за сотрудничество можно получить более легкий приговор и т. д.

<p>38</p>

Интересное решение на основе доверия для дилеммы заключенного и других игр см.: Joshua Letchford, Vincent Conitzer, and Kamal Jain, “An ‘ethical’ game-theoretic solution concept for two-player perfect-information games,” in Proceedings of the 4th International Workshop on Web and Internet Economics, ed. Christos Papadimitriou and Shuzhong Zhang (Springer, 2008).

<p>39</p>

Источник трагедии общих ресурсов: William Forster Lloyd, Two Lectures on the Checks to Population (Oxford University, 1833).