Совместимость. Как контролировать искусственный интеллект. Стюарт Рассел
Чтение книги онлайн.
Читать онлайн книгу Совместимость. Как контролировать искусственный интеллект - Стюарт Рассел страница 13
Способность осуществлять любой процесс, который приходит вам в голову, называется универсальностью. Эту концепцию ввел Алан Тьюринг в 1936 г.[42] Универсальность означает, что нам не нужны отдельные машины для вычислений, машинного перевода, шахмат, распознавания речи или анимации: все это делает одна машина. Ваш ноутбук, в сущности, подобен огромным серверам крупнейших IT-компаний – даже тех, которые оборудованы причудливыми специализированными тензорными процессорами для машинного обучения. Он также по сути идентичен всем компьютерным устройствам, которые еще будут изобретены. Ноутбук может выполнять те же самые задачи при условии, что ему хватает памяти; это лишь занимает намного больше времени.
Статья Тьюринга, где вводилось понятие универсальности, стала одной из важнейших когда-либо написанных статей. В ней он рассказал о простом вычислительном устройстве, способном принимать в качестве входного сигнала описание любого другого вычислительного устройства вместе с входным сигналом этого второго устройства и, симулируя операции второго устройства на своем входе, выдавать тот же результат, что выдало второе устройство. Теперь мы называем это первое устройство универсальной машиной Тьюринга. Чтобы доказать его универсальность, Тьюринг ввел точные определения двух новых типов математических объектов: машин и программ. Вместе машина и программа определяют последовательность событий, а именно – последовательность изменений состояния в машине и в ее памяти.
В истории математики новые типы объектов возникают довольно редко. Математика началась с чисел на заре письменной истории. Затем, около 2000 г. до н. э., древние египтяне и вавилоняне стали работать с геометрическими объектами (точками, линиями, углами, областями и т. д.). Китайские математики в течение I тыс. до н. э. ввели матрицы, тогда как группы математических объектов появились лишь в XIX в. Новые объекты Тьюринга – машины и программы – возможно, самые мощные математические объекты в истории. Ирония заключается в том, что сфера математики по большей части не сумела этого признать и с 1940-х гг. и до настоящего времени компьютеры и вычисления остаются в большинстве крупнейших университетов вотчиной инженерных факультетов.
Возникшая область знания – компьютерная наука – последующие 70 лет бурно развивалась, создав великое
42
Эпохальная статья Тьюринга дает определение понятию, в настоящее время известному как