Organic Mechanisms. Xiaoping Sun

Чтение книги онлайн.

Читать онлайн книгу Organic Mechanisms - Xiaoping Sun страница 26

Автор:
Жанр:
Серия:
Издательство:
Organic Mechanisms - Xiaoping Sun

Скачать книгу

Chemical structures depict the structure of different types of carbocations. Schematic illustration of the (a) Overlap of a C-H bond of the methyl group in the ethyl cation with one lobe of the empty p orbital in the carbocation and (b) linear combination of the C-H bonding orbital with the empty p orbital giving rise to formation of bonding and antibonding molecular orbitals.

      In (CH3)2CH+ (a secondary carbocation), two C─H bonds (each from one methyl group) can overlap simultaneously with one lobe of the unhybridized p orbital in the secondary CH carbon. In (CH3)3C+ (a tertiary carbocation), three C─H bonds (each from one methyl group) can overlap simultaneously with one lobe of the unhybridized p orbital in the tertiary carbon. As a result, the increase in number of the C─H bonds overlapping with the unhybridized p orbital (hyperconjugation effects) makes the positive charge delocalize to greater domains and further lowers the energies of the carbocations. In addition, the inductive effects through the methyl–C+ σ bonds are getting more appreciable as the number of methyl groups on the positive carbon increases. This also makes the positive charge delocalize to greater domains and further lowers the energies of the carbocations.

      When unsaturated groups such as vinyl and phenyl are attached to a positively charged carbon, the carbocations are greatly stabilized. As a result, the stability of allylic cation (CH3=CHCH2+) and benzylic cation (PhCH2+) is even higher than a regular tertiary carbocation such as (CH3)3C+. The stabilization is due to large conjugation effects of the unsaturated groups. In each of the allylic and benzylic cations, the positively charged empty p orbital overlaps in sideways with the π bond of the unsaturated group (conjugation effect), which delocalizes the positive charge to the vinyl or phenyl group and lowers energy of the cation.

      Dissociation of the haloalkane to a carbocation can also be facilitated by a Friedel–Crafts catalyst, such as AlCl3 [1, 6]:

equation

      Once formed, the intermediate carbocation reacts fast with the halide (a nucleophile) to give a haloalkane addition product.

      Due

Скачать книгу