Cases in Medical Microbiology and Infectious Diseases. Melissa B. Miller

Чтение книги онлайн.

Читать онлайн книгу Cases in Medical Microbiology and Infectious Diseases - Melissa B. Miller страница 41

Cases in Medical Microbiology and Infectious Diseases - Melissa B. Miller

Скачать книгу

to his physician; thus the decision to admit him.

      Another test for invasive pneumococcal disease is a urinary antigen test. This test is most likely to be positive in patients with bacteremic pneumococcal pneumonia, the exact clinical situation seen in this patient. This test is most useful in a setting where antimicrobials have already been given, making it much less likely that organisms will be detected either by blood or sputum culture. Urinary antigen tests should not be used in children, especially in the winter months, since false positives due to high colonization rates may occur.

      3. Many different patient populations are at increased risk for invasive pneumococcal disease—pneumonia, bacteremia, and meningitis. Patient populations in whom rates of pneumococcal invasive disease are increased include AIDS patients; patients who are anatomically or functionally asplenic (including patients with sickle-cell disease); patients with cardiovascular, liver, or kidney diseases; individuals with diabetes or malignancies; and individuals who are receiving immunosuppressive agents because of connective tissue disease or organ transplantation. Prevention strategies that target these populations are discussed in the answer to question 5.

      4. The polysaccharide capsule is the major virulence factor of S. pneumoniae. More than 90 antigenically different capsular polysaccharides have been recognized, with 7 types—4, 6B, 9V, 14, 18C, 19F, and 23F—being responsible for 80 to 90% of cases of invasive pneumococcal disease. Animal experiments done in the first part of the 20th century established the importance of capsule in the organism’s ability to cause disease. It is well recognized that the capsular polysaccharide allows the pneumococcus to evade phagocytosis.

      5. Currently, there are two vaccines licensed for prevention of pneumococcal disease, a 23-valent polysaccharide vaccine and a 13-valent conjugate vaccine. The 23-valent vaccine is used in adults, while the 13-valent conjugated vaccine was developed for use in children <2 years of age. Young children are not able to reliably mount a T-cell-independent immune response, the type of immune response necessary to produce antibodies against polysaccharide antigens. However, they are able to mount a T-cell-dependent immune response.

      The 13-valent pneumococcal vaccine is also recommended for adults, especially immunocompromised individuals. Currently, many clinicians are still using the 23-valent vaccine in adults >60 years. In adults, the 23-valent polysaccharide vaccine has been used successfully for many years. The efficacy of the 23-valent vaccine in adults is not as high (efficacy ranges from 50 to 90% in different populations) as that of the 13-valent conjugate vaccine in children.

      A conjugate vaccine is one in which a polysaccharide antigen is coupled to a carrier protein. The coupling of a polysaccharide antigen to a protein creates a “new” antigen. This new antigen stimulates a T-cell-dependent immune response (see case 45 for further details). Therefore, the conjugated pneumococcal vaccine results in a protective immune response to capsular types present in the vaccine and perhaps to other related serotypes in children <2 years old. It has been shown to be highly efficacious (>95%) in preventing invasive pneumococcal disease in this age group. It has been less effective in preventing a common pneumococcal infection in this age group, otitis media. The conjugated pneumococcal vaccine is now recommended for use in all children <2 years of age.

      The widespread use of the 13-valent conjugated pneumococcal vaccine in children has resulted in declines in the two major populations with invasive pneumococcal disease: those <5 and those >65 years of age. Herd immunity clearly is playing a role in this decline and is discussed in greater detail in case 45.

      An additional vaccine strategy that might be helpful in protecting this patient from pneumococcal disease would be to vaccinate him against influenza virus. Influenza infection has been recognized as being an important predisposing factor for the development of pneumococcal pneumonia.

      Alternatively, prophylactic antimicrobials have been used in selected populations, such as sickle-cell patients with a history of recurrent invasive pneumococcal infections. Given the problem of emerging drug resistance in the pneumococci (see below), this is probably a preventive strategy that is becoming less efficacious.

Скачать книгу