Secondary Metabolites of Medicinal Plants. Bharat Singh

Чтение книги онлайн.

Читать онлайн книгу Secondary Metabolites of Medicinal Plants - Bharat Singh страница 87

Автор:
Жанр:
Серия:
Издательство:
Secondary Metabolites of Medicinal Plants - Bharat Singh

Скачать книгу

of Isocarthamidin and Hydroxysafflor yellow A."/> Illustration of the tautomeric structure of Anhydrosafflor yellow B. Illustration of the tautomeric structures of Hydroxysafflor yellow B and Hydroxysafflor yellow C. Illustration of the tautomeric structures of Safflomin C and Saffloquinoside C. Illustration of the tautomeric structures of Caryophyllene and glucopyranosyl flavanone. Illustration of the tautomeric structures of Heneicosane and Kaempferol 3-O-β-rutinoside. Illustration of the tautomeric structures of Syringin and Safflomin A. Illustration of the tautomeric structure of Safflomin B. Illustration of the tautomeric structure of Safflomin C.

      Carthamin is stable to heat and light and is used in baked goods and beverages. The callus was obtained from flower bud explants and could also be put into suspension. The production of carthamin was enhanced by selecting with components of various media as well as by feeding of precursors. It was also found that addition of cellulose, chitin, or chitosan increased production of the carthamin pigment. Supplementation of D-phenylalanine and removal of Mg alone or both Mg and Ca from the culture medium also enhanced the production of carthamin. C. tinctorius L. is commonly known as safflower. C. tinctorius extracts and oil are important in development of drugs with numerous pharmacological activities in the world. Carthamidin, isocarthamidin, hydroxysafflor yellow A, safflor yellow A, safflamin C, and luteolin are the main constituents reported from this plant. Caryophyllene, p-allyltoluene, 1-acetoxytetralin, and heneicosane were identified as the major components from C. tinctorius flower (Asgarpanah and Kazemivash 2013).

      Application of lower concentration of berberine inhibited growth of the callus cultures of C. tinctorius, but the high concentration of berberine tended to stimulate the callus growth of Coptis japonica var. japonica. Among callus cultures of the five species described above, 4-desoxypyridoxine inhibited growth of the callus cultures of C. tinctorius (Yamamoto 1980).

      Phenylalanine (14C) was administered to the cell cultures and the in vivo flowers of C. tinctorius, and the biosynthetic activity of carthamin in these two materials was compared. The cultured cells took up positively the fed substrate, but they could not incorporate the label into carthamin, while incorporation of the radioactivity from phenylalanine into the red pigment occurred in the intact flowers. Polyphenol-oxidizing enzymes were operative normally in the mother explant, whereas their activity patterns changed altogether in the cultured cells, where kurenamin, a new reddish pigment, is produced actively (Saito et al. 1988, 1993).

      Callus regeneration systems for C. tinctorius were evaluated by using root, hypocotyl, cotyledon, and leaf explants, and the influence on organogenesis of seedling age, media factors, growth regulators, and excision orientation was studied. Supplementation of the medium with various concentrations of indole-3-acetic acid (IAA), NAA, BAP, and Kinetin in the MS medium was found effective for callus induction and regeneration in all explants (Nikam and Shitole 1998). The effect of NaCl and polyethylene glycol on callus growth parameters of two safflower cultivars was determined. Callus was initiated on MS medium supplemented with various concentrations of BAP and NAA also containing different concentrations of NaCl. In these experiments, two safflower cultivars were considered as first factor. The different concentrations of NaCl and polyethylene glycol (PEG) were used as second factor (Kakaei et al. 2013).

      The effects of pyruvic acid, ferulic acid, and cinnamic acid on growth and α-tocopherol and pigment productions in C. tinctorius callus and cell suspension cultures were evaluated. The callus and cell suspension growth and α-tocopherol and pigment contents improved significantly on MS medium containing NAA and BAP during one month of incubation period. Incorporation of pyruvic acid significantly enhanced the production of α-tocopherol and yellow pigment. Similarly, supplementation of pyruvic acid enhanced red pigment in callus culture. The cinnamic acid also significantly improved the production of yellow and red pigments in cell suspension culture. However, precursor feeding suppresses the biomass of cell culture and production of α-tocopherol in cell suspension culture (Başalma et al. 2008; Chavan and Nikam 2015).

      Safflower cell cultures cultured in the presence of different concentrations of cadmium were assayed for growth, Cd accumulations, and antioxidative responses. Cadmium inhibited the growth of calli by nearly 50% with supplementation of different Cd concentrations. Calli accumulated Cd per kg of their dry weight at 100 μM Cd concentration. Cadmium induced oxidative stress, which was indicated by modulating antioxidant levels and antioxidative enzymes. The effect of Cd on glutathione was dose dependent. The glutathione content increased up to a concentration of 75 μM Cd and then reduced. Levels of α-tocopherol showed a significant increase with the increase in concentrations of Cd in the media. Antioxidant enzyme activity increased significantly up to a concentration of Cd. Concentrations of Cd greater than 75 μM resulted in a decline in antioxidant enzyme activity (Namjooyan et al. 2012).

      1 Ali, N. and Afrasiab, H. (2014). Effect of TIBA and other plant growth regulators on callogenic response from different explants of safflower (Carthamus tinctorius). Int. J. Agric. Biol. 16: 1112–1116.

      2 Amini, H., Arzani, A., and Bahrami, F. (2013). Seed yield and some physiological traits of safflower as affected by water deficit stress. Int. J. Plant Prod. 7: 597–614.

      3 Asgarpanah, J. and Kazemivash, N. (2013). Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 19: 153–159.

      4 Bajji, M., Bertin, P., Lutts, S., and Kinet, J.M. (2004). Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro. Aust. J. Exp. Agric. 44: 27–35.

      5 Başalma, D., Uranbey, S., Mirici, S., and Kolsarici, Ö. (2008). TDZ × IBA induced shoot regeneration from cotyledonary leaves and in vitro multiplication in safflower (Carthamus tinctorius L). Afr. J. Biotechnol.

Скачать книгу