Fog Computing. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fog Computing - Группа авторов страница 14

Fog Computing - Группа авторов

Скачать книгу

composing IoT, mobile ad hoc network (MANET), and delay-tolerant networking (DTN) technologies. Specifically, sea vessels, which equip multiple sensors, can utilize International Telecommunication Union (ITU) standards-based very high frequency (VHF) data exchange system to route the sensory data to the gateway node (i.e. cellular base station) at the shore via the ship-based MANET. Afterwards, the gateway can relay the data to the central cloud. In general, such an architecture may produce many duplicated sensory transmission readings due to the redundant data transmitted from different ships. In order to remove such duplication and to improve the efficiency, the system can deploy fog computing service at the gateway nodes to preprocess the sensory data toward preventing the gateways sending duplicated data to the central server [4].

      1.3.1.3 Forest Fire Detection

      1.3.1.4 Mobile Ambient Assisted Living

      1.3.2 Land Vehicular Fog

      The development of vehicular networking has improved safety and control on the roads. Especially, LV-Fog nodes have emerged as a solution to introduce computational power and reliable connectivity to transportation systems at the level of Vehicle-to-Infrastructure (V2I), V2V, and Vehicle-to-Device (V2D) communications [19]. These networks are shaped around moving vehicles, pedestrians equipped with mobile devices, and road network infrastructure units. Further, these aspects have facilitated the introduction of real-time situational/context awareness by allowing the vehicle to collect or process data about their surroundings and share these insights with the central traffic control management units or other vehicles and devices in a cooperative manner.

      To perform such activities, there is a need for adequate computing resources at the edge for performing time-critical and data-intensive jobs [20] and face all the challenges related to data collection and dissemination, data storage, mobility-influenced changing network structure, resource management, energy, and data analysis [21, 22].

      Moreover, the design of the Media Access Control (MAC) layer protocol in the vehicular networks is essential for improving the network performance, especially in V2V communication. V2V enables cooperative tasks among the vehicles and introduces cooperative communication, such as:

       Dynamic fog service for next generation mobile applications. The emergence of new mobile applications, such as augmented reality (AR) and virtual reality, have brought a new level of experience that is greedy for more computational power. However, the traditional approach of a distant cloud-driver is incapable of achieving with good performance due to latency. Therefore, introducing Metropolitan vehicle-based cloudlet, which is a form of mobile fog node model, solves the latency issue by dynamically placing the fog at the areas with high demand. Furthermore, by adopting a collaborative task offloading mechanism, the vehicle-based mobile fog nodes are capable of effectively distributing the processes across all the participative nodes, based on their encounter conditions [24].

       Federated intelligent transportation. Traffic jams start to have a considerable negative impact by wasting time, fuel, capital, and polluting the environment due to the nonstop increase in the number of vehicles on the roads [25]. Fortunately, cloud-driven smart vehicles have emerged as a facilitator to overcome the problem. The solution resides in considering the serviceability level of mobile vehicular cloudlets (MVCs), which are a form of the mobile fog node model, based on the real-world large-scale traces of mobility of urban vehicles collected by onboard computers. Based on the peer-to-peer communication network, vehicles can further improve the traffic experience by exchanging real-time information and providing assistance to the manned or unmanned vehicles [26].

       Vehicular opportunistic computation offloading. Public transportation service vehicles, such as buses and trams, which commonly have fixed routes and time schedules, can be the mobile fog nodes for the other mobile application devices inside the proximal encountered vehicles that need to execute time-sensitive and computation-intensive tasks, such as augmented reality (AR) processes used for the advanced driver assistance systems and applications [27].

      1.3.3 Marine Fog

Скачать книгу