Fog Computing. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fog Computing - Группа авторов страница 17

Fog Computing - Группа авторов

Скачать книгу

for instance, forwarding sensor data from Medical IoT devices [5].

      1.4.4 LPWAN, Other Medium- and Long-Range Technologies

      VHF marine radio VHF is the internationally used technology for marine radio in the frequency range 156—163 MHz. Typical range of VHF is reported to be up to 70 nautical miles from a land-based station [56], while ship-to-ship signal range is below 40 km [57]. However, VHF is limited in supported data rate, which is below 30 kbps. While VHF may be sufficient to transmit sensory readings from ships to shore-deployed fog nodes [4] for aggregation and forwarding, the low data rate is unsuitable for agile transfer of larger data (e.g. video streams or VM images).

      Satellite systems offer higher speeds compared to VHF and provide the greatest signal coverage, which is an important factor considering the distances involved in the marine domain. Yet, due to their high cost, these are a viable option only for larger vessels [57, 58].

      Low-power wide-area networks (LPWANs) long range (LoRa) has been receiving attention lately as an energy-efficient, long-range wireless technology. In the mF2C project [29], the physical layer-LoRa, accompanied with LoRaWAN at the data link layer is used for ship-to-ship communication, while [59] use it for ship-to-shore communication in harbors. LoRa with LoRaWAN can cover up to 15 km in rural areas with a data rate up to 37.5 Kbps [60], making it a lower-energy alternative to VHF.

      Sigfox and NB-IoT can be considered as competitors to LoRaWAN. While LoRaWAN and Sigfox operate in unlicensed bands, NB-IoT operates in licensed frequency bands.

      Dedicated short-range communications (DSRC) is another technology defined especially for VANET, which are one-way or two-way short-range to medium-range wireless communications designed for allowing V2V and V2I communications. It is characterized by its frequency of 75 MHz licensed spectrum in 5.9 GHz band, which is provided by Federal Communications Commission (FCC) in the United States [20, 26].

A taxonomy summarizing the elements of the five aspects of the non-functional requirements of mobile fog computing: Heterogeneity, contact awareness, tenant, provider, and security. Illustration depicting the relationships among fog infrastructure service provider, fog service tenant, and tenant-side clients.

      Based on the state-of-the-art literature in both iFog and mFog across the four MFC domains, we explain the elements of the five aspects and what needs to be addressed in order to achieve the QoS in MFC.

      1.5.1 Heterogeneity

      There are three types of heterogeneity: server heterogeneity, end-device heterogeneity, and end-to-end heterogeneity.

      1.5.1.1 Server Heterogeneity

       Hardware type. Represents the hardware component specification and configuration. In detail, the provider should clearly provide information on the hardware in terms of the computational resource specifications, such as CPU model code and speed, RAM model code and speed, read/write speed of storage, independent or integrated GPU, vision processing unit (VPU), field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), AI accelerator, etc.; the available networking resources specification, such as IEEE 802.11a/b/g/n/ac, Bluetooth LE, IEEE802.15.4, LoRa, NB-IoT, etc.; extra components such as inbuilt or connected sensors that are accessible via the API provided by the fog server. Furthermore, if the fog server is hosting on a mobile Fog node, the provider

Скачать книгу