Packaging Technology and Engineering. Dipak Kumar Sarker

Чтение книги онлайн.

Читать онлайн книгу Packaging Technology and Engineering - Dipak Kumar Sarker страница 19

Packaging Technology and Engineering - Dipak Kumar Sarker

Скачать книгу

it is currently considered impossible to produce sufficient raw materials to supply the current global need for plastics, even if all possible efforts were put into bioplastics production, their use alongside better recycling could achieve this end. Other materials called oxo‐(bio)degradables are produced by methods such as adding biological materials to those polymer materials obtained from petrochemical products. Oxo‐biodegradation is a type of degradation resulting from oxidative‐ and microbe‐mediated processes or phenomena in combination or in succession. The emergence of packaging materials made from composites and complex blends of fats and waxes with proteins such as zein (maize) or gluten (wheat) along with starch [13] and chemically modified hydroxypropyl‐ or hydroxyethyl‐cellulose is becoming commonplace [14] for sheeting and adsorbent hydrogel uses in packaged products. Foam ‘peanut’ insulation (Envirofill) and cushioning transport materials (see Figure 8.6) fabricated from thermoplastic starch for applications where expanded PS was previously used have provided good opportunities for growth as more than 220 million tonnes of plastic are used worldwide each year for these purposes. Starch‐based packaging that is often used for secondary packaging includes Bio4Pack (Germany). These bioplastics include starch (corn, pea, and potato) and natural fats (hemp oil, soya oil, etc.). They often make use of blends such as PLA and PCL or on occasion PET and mix this with starch. Starch‐based plastics routinely contain sorbitol or glycerol as plasticisers to increase flexibility [15]. Bioplastics still account for a very small proportion of the total plastics market share – approximately 2% of plastic use. Currently obtainable materials include bioplastics such as starch–PLA, called Biotec (Germany); a starch–PET/PE blend, called Plantic ES (Australia); starch–PCL, called Mater‐Bi (Italy); starch–(polybutylene adipate‐co‐terephthalate), called Ecoflex (BASF, Germany); a starch polyester (Bayer‐Wolff Walsrode, Germany); a starch polyolefin (Roquette, France); kenaf (Deccan hemp); and a fibre–PLA material (NEC Corp., Japan). Routine use of PET is hoped to be replaced with a sugar cane‐derived monoethylene glycol–PET material used for the soft drinks industries called PlantBottle (Dasani/Coca‐Cola Company, USA). Thermoplastic starches called Chisso (Japan) and another variant called Envirofill based on an expanded product (DuPont, USA) represent promising new candidate materials. Unfortunately, biopolymers of this type tend to degrade easily at 180 °C and consequently, at present, many are combined with oil‐derived plastics from a performance point of view and this informs design strongly [16]. European standard EN 13432 and ASTM 6954 describe the criteria and precisely controlled conditions used in prescribed tests for degradation at 60 °C in order for a material to be considered as biodegradable. The biopolymers suitable for packaging applications [15], including starch, chitin/chitosan, cellulose derivatives, PLA, PCL, poly(butylene succinate), and polyhydroxybutyrate, are discussed in detail in other publications.

      1 1 Risch, S.J. (2009). Food packaging history and innovations. Journal of Agricultural and Food Chemistry 57: 8089–8092. https://doi.org/10.1021/jf900040r.

      2 2 Goldsmith, R.E. (1999). The personalised marketplace: beyond the 4Ps. Marketing Intelligence & Planning 17 (4): 178–185. https://doi.org/10.1108/02634509910275917.

      3 3 Gustavo, J.U., Pereira, G.M., Bond, A.J. et al. (2018). Drivers, opportunities and barriers for a retailer in the pursuit of more sustainable packaging design. Journal of Cleaner Production 187: 18–28. https://doi.org/10.1016/j.jclepro.2018.03.197.

      4 4 Fadiji, T., Coetzee, C., Chen, L. et al. (2016). Susceptibility of apples to bruising inside ventilated corrugated paperboard packages during simulated transport damage. Postharvest Biology and Technology 118: 111–119. https://doi.org/10.1016/j.postharvbio.2016.04.001.

      5 5 World Health Organization. (2002). Annex 9: Guidelines on Packaging for Pharmaceutical Products. WHO Tech. Rep. Ser. 902: 119–156.

      6 6 Bauer, E.J. (2009). Issues facing modern drug packaging. In: Pharmaceutical Packaging Handbook (eds. R. Coles, D. McDowell and M.J. Kirwin), 493–535. New York: Informa Healthcare.Chapter 12:

      7 7 Coles, R. (2003). Introduction. In: Food Packaging Technology (eds. R. Coles, D. McDowell and M. Kirwin), 1–31. Boca Raton: Blackwell Publishing (CRC Press). Chapter 1:

      8 8 Shin, J. and Selke, S.E.M. (2014). Food packaging. In: Food Processing: Principles and Applications, 2e (eds. S. Clark, S. Jung and B. Lamsal), 249–273. Chichester: Wiley.Chapter 11:

      9 9 Marsh, K. and Bugusu, B. (2007). Food packaging – roles, materials, and environmental issues. Journal of Food Science 72 (3): R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x.

      10 10 Reisch, L., Eberle, U., and Lorek, S. (2013). Sustainable food consumption: an overview of contemporary issues and policies. Sustainability: Science, Practice and Policy 9 (2): 1–19. https://doi.org/10.1080/15487733.2013.11908111.

      11 11 Raju, G., Sarkar, P., Singla, E. et al. (2016). Comparison of environmental sustainability of pharmaceutical packaging. Perspectives on Science 8: 683–685. https://doi.org/10.1016/j.pisc.2016.06.058.

      12 12 Thakur, S., Chaudhary, J., Sharma, B. et al. (2018). Sustainability of bioplastics: opportunities and challenges. Current Opinion in Green and Sustainable Chemistry 13: 68–75. https://doi.org/10.1016/j.cogsc.2018.04.013.

      13 13 Masmoudi, F., Bessadok, A., Dammak, M. et al. (2016). Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environmental Science and Pollution Research 23 (20): 20904–20914. https://doi.org/10.1007/s11356-016-7276-y.

      14 14 Qiu, X. and Hu, S. (2013). “Smart” materials based on cellulose: a review of the preparations, properties and applications. Materials 6: 738–781. https://doi.org/10.3390/ma6030738.

      15 15 Youssef, A.M. and El‐Sayed, S.M. (2018). Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydrate Polymers 193: 19–27. https://doi.org/10.1016/j.carbpol.2018.03.088.

      16 16 Betancur‐Muñoz, P., Osorio‐Gómez, G., Martínez‐Cadavid, J.F., and Duque‐Lombana, J.F. (2014). Integrating design for assembly guidelines in packaging design with a context‐based approach. Procedia CIRP 21: 342–347. https://doi.org/10.1016/j.procir.2014.03.173.

      CHAPTER MENU

       Introduction

       Building Blocks, Extraction, and Raw Materials

       Industrial Processes, Wood‐Pulping, Processing, and Smelting

Скачать книгу